sulfamethizole has been researched along with glipizide in 6 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (16.67) | 29.6817 |
2010's | 5 (83.33) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Pratim Roy, P; Roy, K | 1 |
Gozalbes, R; Pineda-Lucena, A | 1 |
Barton, P; Luker, T; Wenlock, MC | 1 |
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K | 1 |
Brodsky, JL; Chiang, A; Chung, WJ; Denny, RA; Goeckeler-Fried, JL; Havasi, V; Hong, JS; Keeton, AB; Mazur, M; Piazza, GA; Plyler, ZE; Rasmussen, L; Rowe, SM; Sorscher, EJ; Weissman, AM; White, EL | 1 |
AbuKhader, MM; Alqtaishat, S; Khanfar, MA; Taha, MO | 1 |
1 review(s) available for sulfamethizole and glipizide
Article | Year |
---|---|
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk | 2016 |
5 other study(ies) available for sulfamethizole and glipizide
Article | Year |
---|---|
Comparative chemometric modeling of cytochrome 3A4 inhibitory activity of structurally diverse compounds using stepwise MLR, FA-MLR, PLS, GFA, G/PLS and ANN techniques.
Topics: Algorithms; Cytochrome P-450 CYP3A; Cytochrome P-450 CYP3A Inhibitors; Enzyme Inhibitors; Factor Analysis, Statistical; Least-Squares Analysis; Linear Models; Models, Molecular; Neural Networks, Computer; Quantitative Structure-Activity Relationship; Reproducibility of Results | 2009 |
QSAR-based solubility model for drug-like compounds.
Topics: Databases, Factual; Models, Molecular; Pharmaceutical Preparations; Quantitative Structure-Activity Relationship; Solubility; Water | 2010 |
Lipophilicity of acidic compounds: impact of ion pair partitioning on drug design.
Topics: Acids; Albumins; Drug Design; Humans; Hydrogen-Ion Concentration; Lipids; Molecular Structure; Pharmaceutical Preparations; Protein Binding | 2011 |
Increasing the Endoplasmic Reticulum Pool of the F508del Allele of the Cystic Fibrosis Transmembrane Conductance Regulator Leads to Greater Folding Correction by Small Molecule Therapeutics.
Topics: Alleles; Benzoates; Cells, Cultured; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Endoplasmic Reticulum; Furans; Gene Deletion; HEK293 Cells; HeLa Cells; High-Throughput Screening Assays; Humans; Hydroxamic Acids; Microscopy, Fluorescence; Protein Folding; Protein Structure, Tertiary; Pyrazoles; RNA, Messenger; Small Molecule Libraries; Ubiquitination; Vorinostat | 2016 |
Pharmacophore modeling, homology modeling, and in silico screening reveal mammalian target of rapamycin inhibitory activities for sotalol, glyburide, metipranolol, sulfamethizole, glipizide, and pioglitazone.
Topics: Adrenergic beta-Antagonists; Amino Acid Sequence; Anti-Infective Agents; Catalytic Domain; Crystallography, X-Ray; Glipizide; Glyburide; Humans; Hypoglycemic Agents; Metipranolol; Models, Molecular; Molecular Docking Simulation; Phosphatidylinositol 3-Kinases; Pioglitazone; Quantitative Structure-Activity Relationship; ROC Curve; Sequence Alignment; Sotalol; Sulfamethizole; Thiazolidinediones; TOR Serine-Threonine Kinases | 2013 |