succinamopine and nopaline

succinamopine has been researched along with nopaline* in 2 studies

Other Studies

2 other study(ies) available for succinamopine and nopaline

ArticleYear
Complete Sequence of Succinamopine Ti-Plasmid pTiEU6 Reveals Its Evolutionary Relatedness with Nopaline-Type Ti-Plasmids.
    Genome biology and evolution, 2019, 09-01, Volume: 11, Issue:9

    Agrobacterium tumefaciens is the etiological agent of plant crown gall disease, which is induced by the delivery of a set of oncogenic genes into plant cells from its tumor-inducing (Ti) plasmid. Here we present the first complete sequence of a succinamopine-type Ti-plasmid. Plasmid pTiEU6 is comprised of 176,375 bp with an overall GC content of 56.1% and 195 putative protein-coding sequences could be identified. This Ti-plasmid is most closely related to nopaline-type Ti-plasmids. It contains a single T-region which is somewhat smaller than that of the nopaline-type Ti-plasmids and in which the gene for nopaline synthesis is replaced by a gene (sus) for succinamopine synthesis. Also in pTiEU6 the nopaline catabolic genes are replaced by genes for succinamopine catabolism. In order to trace the evolutionary origin of pTiEU6, we sequenced six nopaline Ti-plasmids to enlarge the scope for comparison to this class of plasmids. Average nucleotide identity analysis revealed that pTiEU6 was most closely related to nopaline Ti-plasmids pTiT37 and pTiSAKURA. In line with this traces of several transposable elements were present in all the nopaline Ti plasmids and in pTiEU6, but one specific transposable element insertion, that of a copy of IS1182, was present at the same site only in pTiEU6, pTiT37, and pTiSAKURA, but not in the other Ti plasmids. This suggests that pTiEU6 evolved after diversification of nopaline Ti-plasmids by DNA recombination between a pTiT37-like nopaline Ti-plasmid and another plasmid, thus introducing amongst others new catabolic genes matching a new opine synthase gene for succinamopine synthesis.

    Topics: Agrobacterium tumefaciens; Amino Acids; Arginine; DNA Transposable Elements; DNA, Bacterial; Evolution, Molecular; Phylogeny; Plant Tumor-Inducing Plasmids; Plant Tumors; Sequence Analysis, DNA

2019
The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of pTiBo542 outside of T-DNA.
    Journal of bacteriology, 1986, Volume: 168, Issue:3

    We used a binary-vector strategy to study the hypervirulence of Agrobacterium tumefaciens A281, an L,L-succinamopine strain. Strain A281 is hypervirulent on several solanaceous plants. We constructed plasmids (pCS65 and pCS277) carrying either the transferred DNA (T-DNA) or the remainder of the tumor-inducing (Ti) plasmid (pEHA101) from this strain and tested each of these constructs in trans with complementary regions from heterologous Ti plasmids. Hypervirulence on tobacco could be reconstructed in a bipartite strain with the L,L-succinamopine T-DNA and the vir region on separate plasmids. pEHA101 was able to complement octopine T-DNA to hypervirulence on tobacco and tomato plants. Nopaline T-DNA was complemented better on tomato plants by pEHA101 than it was by its own nopaline vir region, but not to hypervirulence. L,L-Succinamopine T-DNA could not be complemented to hypervirulence on tobacco and tomato plants with either heterologous vir region. From these results we suggest that the hypervirulence of strain A281 is due to non-T-DNA sequences on the Ti plasmid.

    Topics: Amino Acids; Arginine; DNA, Bacterial; Genes, Bacterial; Genetic Vectors; Indoleacetic Acids; Nicotiana; Plant Tumors; Plants; Plants, Toxic; Plasmids; Rhizobium; Virulence

1986