succimer and zinc-chloride

succimer has been researched along with zinc-chloride* in 2 studies

Other Studies

2 other study(ies) available for succimer and zinc-chloride

ArticleYear
Cadmium inhibits delta-aminolevulinate dehydratase from rat lung in vitro: interaction with chelating and antioxidant agents.
    Chemico-biological interactions, 2007, Jan-30, Volume: 165, Issue:2

    The effect of cadmium (Cd(2+)) on delta-aminolevulinate dehydratase (delta-ALA-D) activity from rat lung in vitro was investigated. delta-ALA-D activity, a parameter for metal intoxication, has been reported as a target of Cd(2+) in different tissues. The protective effect of monotherapies with dithiol chelating (meso-2,3-dimercaptosuccinic acid (DMSA) and 2,3-dimercaptopropane-1-sulfonic acid (DMPS)) or antioxidant agents (ascorbic acid, diphenyl diselenide (PhSe)(2), and N-acetylcysteine (NAC)) was evaluated. The effect of a combined therapy (dithiol chelatingxantioxidant agent) was also studied. Zinc chloride (ZnCl(2)) and dithiothreitol (DTT) were used to investigate the mechanisms involved in cadmium, chelating and antioxidant effects on delta-ALA-D activity. Cadmium inhibited rat lung delta-ALA-D activity at low concentrations. DTT (3mM), but not ZnCl(2) (100microM), protected the inhibition of enzyme activity caused by Cd(2+). Chelating agents were not effective in restoring the enzyme activity. DMPS and DMSA presented inhibitory effect on enzyme activity. DTT restored the inhibition caused by both chelating agents, but ZnCl(2) restored only the inhibitory effect induced by DMSA. These compounds caused a marked potentiation of delta-ALA-D inhibition induced by Cd(2+). ZnCl(2) did not restore inhibition of enzyme activity caused by Cd(2+) plus chelating agents. Conversely, DTT restored the inhibition induced by Cd(2+)/DMSA, but not by Cd(2+)/DMPS. Antioxidants were not effective in ameliorating delta-ALA-D inhibition induced by Cd(2+), whereas ascorbic acid potentiated the enzyme inhibition induced by this metal. A combined effect of Cd(2+)xDMPSx(PhSe)(2) and Cd(2+)xDMPSxNAC was observed. There was no combined effect of Cd(2+)xchelatorxantioxidants when DMSA was used. This study demonstrated that Cd(2+)inhibited delta-ALA-D activity and chelating and antioxidant agents, alone or combined, did not restore the enzyme activity. In contrast, these compounds potentiated the inhibition induced by Cd(2+) in rat lung.

    Topics: Acetylcysteine; Animals; Antioxidants; Ascorbic Acid; Benzene Derivatives; Cadmium Chloride; Chelating Agents; Chlorides; Dithiothreitol; Dose-Response Relationship, Drug; Drug Combinations; Drug Interactions; Environmental Pollutants; Enzyme Inhibitors; Lung; Male; Organoselenium Compounds; Porphobilinogen Synthase; Rats; Rats, Wistar; Succimer; Unithiol; Zinc Compounds

2007
2,3-Dimercaptopropanol, 2,3-dimercaptopropane-1-sulfonic acid, and meso-2,3-dimercaptosuccinic acid inhibit delta-aminolevulinate dehydratase from human erythrocytes in vitro.
    Environmental research, 2004, Volume: 94, Issue:3

    The effects of dithiol chelating agents meso-2,3-dimercaptosuccinic acid (DMSA), 2,3-dimercaptopropane-1-sulfonic acid (DMPS), and 2,3-dimercaptopropanol (BAL) on delta-aminolevulinate dehydratase (delta-ALA-D) from human erythrocytes were evaluated. Furthermore, possible protective effects of zinc chloride (ZnCl(2)), dithiothreitol (DTT), and cysteine were studied. delta-ALA-D activity from human erythrocytes was inhibited by dithiol chelating agents in a concentration-dependent manner. Cysteine, at all concentrations tested, did not protect the inhibitory effect of 1 and 4 mM DMPS and DMSA, but protected 1 mM BAL inhibition. Dithiotreitol was able to protect the inhibition caused by 1 mM BAL (28%), DMPS (56%), and DMSA (40%) in a concentration-dependent manner. Zinc chloride protected and restored 1 mM BAL inhibitory effect on delta-ALA-D. Zinc chloride at 500 microM and 1 mM, respectively, protected inhibitory effects of DMPS and DMSA (1 and 4 mM), but did not reverse its effects. The preincubation of dithiol chelating agents with enzyme demonstrated that DMSA was the most potent delta-ALA-D inhibitor of human erythrocytes. These data are in agreement with delta-ALA-D activity from purified enzyme. ZnCl(2) (1 microM) added, in the reaction mixture, increased enzyme activity and DTT (100 microM) totally restored the enzyme activity for all chelating agents tested.

    Topics: Chelating Agents; Chlorides; Cysteine; Dimercaprol; Dithiothreitol; Dose-Response Relationship, Drug; Erythrocytes; Humans; In Vitro Techniques; Porphobilinogen Synthase; Reducing Agents; Succimer; Unithiol; Zinc Compounds

2004