su-5614 and midostaurin

su-5614 has been researched along with midostaurin* in 4 studies

Other Studies

4 other study(ies) available for su-5614 and midostaurin

ArticleYear
Autotaxin is expressed in FLT3-ITD positive acute myeloid leukemia and hematopoietic stem cells and promotes cell migration and proliferation.
    Experimental hematology, 2013, Volume: 41, Issue:5

    Autotaxin (ATX) has been reported to act as a motility and growth factor in a variety of cancer cells. The ATX protein acts as a secreted lysophospholipase D by converting lysophosphatidylcholine (LPC) to lysophosphatidic acid (LPA), which signals via G-protein-coupled receptors and has important functions in cell migration and proliferation. This study demonstrates that ATX expression is specifically upregulated and functionally active in acute myeloid leukemia (AML) harboring an internal tandem duplication (ITD) mutation of the FLT3 receptor gene. Moreover, ATX expression was also found in normal human CD34+ progenitor cells and selected myeloid and lymphoid subpopulations. Enforced expression of mutant FLT3-ITD by retroviral vector transduction increased ATX mRNA in selected cell lines, whereas inhibition of FLT3-ITD signaling by sublethal doses of PKC412 or SU5614 led to a significant downregulation of ATX mRNA and protein levels. In the presence of LPC, ATX expression significantly increased proliferation. LPA induced proliferation, regardless of ATX expression, and induced chemotaxis in all tested human leukemic cell lines and human CD34(+) progenitors. LPC increased chemotaxis only in cells with high expression of endogenous ATX by at least 80%, demonstrating the autocrine action of ATX. Inhibition of ATX using a small molecule inhibitor selectively induced killing of ATX-expressing cell lines and reduced motility in these cells. Our data suggest that the production of bioactive LPA through ATX is involved in controlling proliferation and migration during hematopoiesis and that deregulation of ATX contributes to the pathogenesis of AML.

    Topics: Acute Disease; Blotting, Western; Cell Line; Cell Line, Tumor; Cell Movement; Cell Proliferation; Cells, Cultured; fms-Like Tyrosine Kinase 3; Gene Expression Profiling; Gene Expression Regulation, Leukemic; Hematopoietic Stem Cells; Humans; Indoles; K562 Cells; Leukemia, Myeloid; Lysophosphatidylcholines; Lysophospholipids; Mutation; Oligonucleotide Array Sequence Analysis; Phosphoric Diester Hydrolases; Protein Kinase Inhibitors; Reverse Transcriptase Polymerase Chain Reaction; Staurosporine; Tandem Repeat Sequences

2013
FMS-like tyrosine kinase 3-internal tandem duplication tyrosine kinase inhibitors display a nonoverlapping profile of resistance mutations in vitro.
    Cancer research, 2009, Apr-01, Volume: 69, Issue:7

    FMS-like tyrosine kinase 3 (FLT3) inhibitors have shown activity in the treatment of acute myelogenous leukemia (AML). Secondary mutations in target kinases can cause clinical resistance to therapeutic kinase inhibition. We have previously shown that sensitivity toward tyrosine kinase inhibitors varies between different activating FLT3 mutations. We therefore intended to determine whether different FLT3 inhibitors would produce distinct profiles of secondary, FLT3 resistance mutations. Using a cell-based screening approach, we generated FLT3-internal tandem duplication (ITD)-expressing cell lines resistant to the FLT3 inhibitors SU5614, PKC412, and sorafenib. Interestingly, the profile of resistance mutations emerging with SU5614 was limited to exchanges in the second part of the kinase domain (TK2) with exchanges of D835 predominating. In contrast, PKC412 exclusively produced mutations within tyrosine kinase domain 1 (TK1) at position N676. A mutation at N676 recently has been reported in a case of PKC412-resistant AML. TK1 mutations exhibited a differential response to SU5614, sorafenib, and sunitinib but strongly impaired response to PKC412. TK2 exchanges identified with SU5614 were sensitive to PKC412, sunitinib, or sorafenib, with the exception of Y842D, which caused a strong resistance to sorafenib. Of note, sorafenib also produced a highly distinct profile of resistance mutations with no overlap to SU5614 or PKC412, including F691L in TK1 and exchanges at position Y842 of TK2. Thus, different FLT3 kinase inhibitors generate distinct, nonoverlapping resistance profiles. This is in contrast to Bcr-Abl kinase inhibitors such as imatinib, nilotinib, and dasatinib, which display overlapping resistance profiles. Therefore, combinations of FLT3 inhibitors may be useful to prevent FLT3 resistance mutations in the setting of FLT3-ITD-positive AML.

    Topics: Animals; Benzenesulfonates; Cell Line; Drug Resistance; fms-Like Tyrosine Kinase 3; Indoles; Mice; Models, Molecular; Mutagenesis, Site-Directed; Mutation; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Protein Structure, Tertiary; Pyridines; Receptors, Platelet-Derived Growth Factor; Sorafenib; Staurosporine; Tandem Repeat Sequences

2009
Mutations in the tyrosine kinase domain of FLT3 define a new molecular mechanism of acquired drug resistance to PTK inhibitors in FLT3-ITD-transformed hematopoietic cells.
    Blood, 2004, Mar-15, Volume: 103, Issue:6

    Activating mutations in the juxtamembrane domain (FLT3-length mutations, FLT3-LM) and in the protein tyrosine kinase domain (TKD) of FLT3 (FLT3-TKD) represent the most frequent genetic alterations in acute myeloid leukemia (AML) and define a molecular target for therapeutic interventions by protein tyrosine kinase (PTK) inhibitors. We could show that distinct activating FLT3-TKD mutations at position D835 mediate primary resistance to FLT3 PTK inhibitors in FLT3-transformed cell lines. In the presence of increasing concentrations of the FLT3 PTK inhibitor SU5614, we generated inhibitor resistant Ba/F3 FLT3-internal tandem duplication (ITD) cell lines (Ba/F3 FLT3-ITD-R1-R4) that were characterized by a 7- to 26-fold higher IC50 (concentration that inhibits 50%) to SU5614 compared with the parental ITD cells. The molecular characterization of ITD-R1-4 cells demonstrated that specific TKD mutations (D835N and Y842H) on the ITD background were acquired during selection with SU5614. Introduction of these dual ITD-TKD, but not single D835N or Y842H FLT3 mutants, in Ba/F3 cells restored the FLT3 inhibitor resistant phenotype. Our data show that preexisting or acquired mutations in the PTK domain of FLT3 can induce drug resistance to FLT3 PTK inhibitors in vitro. These findings provide a molecular basis for the evaluation of clinical resistance to FLT3 PTK inhibitors in patients with AML.

    Topics: Acute Disease; Animals; Antimetabolites, Antineoplastic; Antineoplastic Agents; Apoptosis; Cell Division; Cell Line, Transformed; Cytarabine; DNA-Binding Proteins; Drug Resistance, Neoplasm; Enzyme Inhibitors; fms-Like Tyrosine Kinase 3; Genistein; Humans; Indoles; Leukemia, Myeloid; MAP Kinase Signaling System; Milk Proteins; Mutagenesis; Phenotype; Phosphorylation; Protein Structure, Tertiary; Proto-Oncogene Proteins; Receptor Protein-Tyrosine Kinases; STAT5 Transcription Factor; Staurosporine; Trans-Activators; Tyrphostins

2004
Sensitivity toward tyrosine kinase inhibitors varies between different activating mutations of the FLT3 receptor.
    Blood, 2003, Jul-15, Volume: 102, Issue:2

    Activating mutations of FLT3 have been detected in patients with acute myeloid leukemia (AML). Two distinct types of FLT3 mutations are most common: internal tandem duplication (ITD) of sequences coding for the juxtamembrane domain and point mutations at codon 835 (Asp835) within the kinase domain. Both types of mutations constitutively activate the tyrosine kinase activity of FLT3 in experimental systems and result in factor-independent proliferation of Ba/F3 and 32D cells. Recently, novel mutations within the activation loop were identified in patients with AML: deletion of isoleucine 836 (Ile836del) and an exchange of isoleucine 836 to methionine plus an arginine insertion (Ile836Met+Arg). To examine whether the Ile836 mutations result in constitutive activation of the FLT3 receptor, we introduced both mutant FLT3 cDNAs transiently into HEK 293 cells. Both mutant FLT3 receptors were constitutively autophosphorylated in the absence of ligand and kinase activity led to constitutive activation of downstream signaling cascades as determined by activation of the STAT5 (signal transducer and activator of transcription 5) pathway. When stably expressed in the growth factor-dependent cell lines Ba/F3 and 32D, both deletion and insertion mutants led to factor-independent proliferation, indicating that both mutants have transforming capabilities. We then examined the sensitivity of the FLT3 ITD, FLT3 Asp835Tyr, and the novel FLT3 receptor mutants toward the kinase inhibitors AG1296, PKC412, and SU5614. We show that these FLT3 kinase inhibitors have distinct inhibitory potencies against different activating FLT3 receptor mutants. These results suggest that it may be useful to determine the exact kind of FLT3 mutation when applying receptor kinase inhibitors in clinical trials.

    Topics: Acute Disease; Amino Acid Substitution; Animals; Cell Division; Cell Line; Codon; DNA-Binding Proteins; Drug Resistance; Enzyme Activation; Enzyme Inhibitors; fms-Like Tyrosine Kinase 3; Hematopoietic Stem Cells; Humans; Indoles; Leukemia, Myeloid; Membrane Proteins; Mice; Milk Proteins; Mutagenesis, Insertional; Mutation, Missense; Neoplasm Proteins; Phosphorylation; Protein Processing, Post-Translational; Proto-Oncogene Proteins; Receptor Protein-Tyrosine Kinases; Recombinant Proteins; Sequence Deletion; STAT5 Transcription Factor; Staurosporine; Structure-Activity Relationship; Trans-Activators; Transfection; Tyrphostins

2003