strychnine has been researched along with tenocyclidine* in 6 studies
6 other study(ies) available for strychnine and tenocyclidine
Article | Year |
---|---|
The glycine site of the N-methyl-D-aspartate receptor channel: differences between the binding of HA-966 and of 7-chlorokynurenic acid.
The mechanisms of action of three different glycine-site antagonists of the N-methyl-D-aspartate (NMDA)-receptor channel were analyzed employing [3H]glycine direct binding assays, as well as functional glycine- and glutamate-induced uncompetitive blocker binding assays. The latter assays measure apparent channel opening. All three antagonists tested, viz., 7-chlorokynurenic acid (7-Cl-KYNA), kynurenic acid (KYNA), and 1-hydroxy-3-aminopyrrolidone-2 (HA-966), inhibited the binding of [3H]glycine to the NMDA receptor in a dose-dependent manner. These antagonists also inhibited the glycine-induced increase in accessibility of the uncompetitive blocker [3H]N-[1-(2-thienyl)cyclohexyl]-piperidine ([3H]TCP) to the channel. 7-Cl-KYNA and KYNA, but not HA-966, completely blocked the glutamate-induced binding of [3H]TCP, in a manner similar to the non-competitive manner in which the selective NMDA antagonist D-(-)-2-amino-5-phosphonovaleric acid (AP-5) inhibited glycine-induced [3H]TCP binding. The inhibitory effects of HA-966 and of AP-5 on glutamate-induced [3H]TCP binding were overcome when glutamate concentrations were increased. Of the three antagonists, 7-Cl-KYNA appears to be the most potent (Ki = 0.4-1.0 microM) and the most selective glycine antagonist. KYNA was found to act at both the glycine (Ki = 40-50 microM) and the glutamate sites. In contrast, HA-966 (Ki = 6-17 microM) appears to act either on a domain distinct from the glutamate and the glycine sites, but tightly associated with the latter, or at the glycine site, but according to a mechanism distinct from that of 7-Cl-KYNA.(ABSTRACT TRUNCATED AT 250 WORDS) Topics: Animals; Binding Sites; Glycine; Ion Channels; Kynurenic Acid; Phencyclidine; Pyrrolidinones; Rats; Rats, Inbred Strains; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Strychnine | 1990 |
Developmental study of [3H]TCP and [3H]glycine binding sites in the rat hippocampus.
The postnatal development of [3H]thienylphencyclidine ([3H]TCP) sites in rat hippocampus has been studied autoradiographically and with membrane preparations. [3H]TCP binding increased progressively from birth to adulthood; this is due to a change in the maximal number of sites (Bmax) but not in the affinity (Kd). A different developmental pattern was found for strychnine-insensitive [3H]glycine binding which also increased after birth, but reached adult levels earlier than [3H]TCP binding. The ontogenesis of TCP or glycine sites also differed from that previously described for N-methyl-D-aspartate (NMDA) sites in the hippocampus. In neonatal, as in adult hippocampus, [3H]TCP binding was enhanced by NMDA or glycine and reduced by Mg2+. We suggest that TCP sites are functionally coupled to the NMDA receptor-ion channel complex in developing as in mature hippocampus, but that there are developmental changes in the receptor channel complex. Topics: Aging; Animals; Autoradiography; Hippocampus; In Vitro Techniques; Kinetics; Magnesium; N-Methylaspartate; Nerve Tissue Proteins; Phencyclidine; Rats; Rats, Inbred Strains; Receptors, Glycine; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Strychnine | 1990 |
Competitive inhibition of magnesium-induced [3H]N-(1-[thienyl] cyclohexyl)piperidine binding by arcaine: evidence for a shared spermidine-magnesium binding site.
The polyamine competitive antagonist arcaine (1,4-diguanidino-butane) produced complete inhibition of basal [3H]N-(1-[thienyl] cyclohexyl)piperidine ([3H]TCP) binding, with an IC50 value of 4.52 +/- 0.93 microM. Arcaine (5 and 10 microM) produced a decrease in the affinity without a significant change in the receptor density of [3H]TCP binding under equilibrium conditions. In addition, arcaine did not alter either N-methyl-D-aspartate-specific [3H] glutamate or strychnine-insensitive [3H]glycine binding. Furthermore, increasing concentrations of arcaine produced parallel rightward shifts in the concentration-response curves for both spermidine- and magnesium-induced [3H]TCP binding, suggesting that arcaine is a competitive inhibitor of both agonists. Similar rightward shifts were observed for barium- and strontium-induced [3H]TCP binding. In contrast, arcaine decreased the efficacy of glutamate- and glycine-induced [3H]TCP binding without changing their EC50 values, indicating a noncompetitive type of inhibition. These results imply that spermidine and certain divalent cations including magnesium share the same mechanism for enhancing [3H]TCP binding, whereas glutamate and glycine have different sites of action. This is further supported by the additive effect of spermidine when tested in the presence of maximal concentrations of glutamate and glycine. On the other hand, spermidine and magnesium were not additive and, in fact, magnesium was able to block the effects of spermidine under certain conditions. The possibility that magnesium is a partial agonist at the polyamine site is discussed. Topics: Animals; Biguanides; Binding Sites; Binding, Competitive; Dose-Response Relationship, Drug; Drug Interactions; Glutamates; Glutamic Acid; Glycine; In Vitro Techniques; Magnesium; Phencyclidine; Rats; Receptors, N-Methyl-D-Aspartate; Spermidine; Strychnine | 1990 |
Evidence for a functional coupling of the NMDA and glycine recognition sites in synaptic plasma membranes.
Activation of the N-methyl-D-aspartate (NMDA) receptor complex is subject to modulation via interactions at a coupled [3H]glycine recognition site in rat brain synaptic plasma membranes (SPM). We examined the effect of the potent and specific glycine site antagonists, 1-hydroxy-3-amino-2-pyrrolidone (HA-966) and 1-aminocyclobutane-1-carboxylate (ACBC), on the NMDA recognition site. These glycine analogs were found to significantly stimulate the binding of the competitive NMDA antagonist, [3H]3-(2-carboxypiperazin-4-y1)propyl-1-phosphonate ([3H]CPP) in a dose-dependent fashion, whereas both compounds inhibited NMDA-specific L-[3H]glutamate (agonist) binding. Additionally, both glycine antagonists reduced the binding of [3H]1-[1-(2-thienyl)cyclohexyl]piperidine ([3H]TCP) to SPM, a functional assessment of activation of the NMDA receptor-channel complex. The glycine site agonists, glycine and serine reversed these effects in a dose-dependent manner, with the serine reversal being stereospecific for D-serine. The relative potencies of these compounds in reversing the glycine antagonist effects on the NMDA recognition site corresponded with their ability to competitively displace strychnine-insensitive [3H]glycine binding. These results provide evidence for a functional coupling between the glycine and NMDA recognition sites and further, may provide a mechanism by which compounds interacting at the glycine recognition site may modulate NMDA receptor activity. Topics: Amino Acids; Amino Acids, Cyclic; Animals; Cell Membrane; Glutamates; Glycine; In Vitro Techniques; Kinetics; Male; Phencyclidine; Piperazines; Pyrrolidinones; Rats; Rats, Inbred Strains; Receptors, Glycine; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Strychnine; Synaptic Membranes | 1990 |
1-Aminocyclobutane-1-carboxylate (ACBC): a specific antagonist of the N-methyl-D-aspartate receptor coupled glycine receptor.
Topics: Amino Acids; Amino Acids, Cyclic; Animals; Binding, Competitive; Cycloleucine; In Vitro Techniques; Phencyclidine; Rats; Receptors, Glycine; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Strychnine | 1989 |
Cycloleucine competitively antagonizes the strychnine-insensitive glycine receptor.
Topics: Amino Acids; Animals; Aspartic Acid; Binding, Competitive; Cycloleucine; Glycine; In Vitro Techniques; Male; N-Methylaspartate; Phencyclidine; Rats; Receptors, Glycine; Receptors, Neurotransmitter; Strychnine | 1988 |