strychnine has been researched along with potassium-phosphate* in 1 studies
1 other study(ies) available for strychnine and potassium-phosphate
Article | Year |
---|---|
Glycine inhibits the LPS-induced increase in cytosolic Ca2+ concentration and TNFalpha production in cardiomyocytes by activating a glycine receptor.
Previous studies have demonstrated that glycine (GLY) markedly reduces lipopolysaccharide (LPS)-induced myocardial injury.However, the mechanism of this effect is still unclear. The present study investigated the effect of GLY on cytosolic calcium concentration([Ca2+]c) and tumor necrosis factor-alpha (TNFalpha) production in cardiomyocytes exposed to LPS, as well as whether the glycine-gated chloride channel is involved in this process.. Neonatal rat cardiomyocytes were isolated, and the [Ca2+]c and TNFalpha levels were determined by using Fura-2 and a Quantikine enzyme-linked immunosorbent assay, respectively. The distribution of the GLY receptor and GLY-induced currents in cardiomyocytes were also investigated using immunocytochemistry and the whole-cell patch-clamp technique, respectively.. LPS at concentrations ranging from 10 ng/mL to 100 microg/mL significantly stimulated TNFalpha production. GLY did not inhibit TNFalpha production induced by LPS at concentrations below 10 ng/mL but did significantly decrease TNFalpha release stimulated by 100 microg/mL LPS and prevented an LPS-induced increase in [Ca2+]c, which was reversed by strychnine, a glycine receptor antagonist. GLY did not block the isoproterenol-induced increase in [Ca2+]c, but did prevent the potassium chloride-induced increase in [Ca2+]c in cardiomyocytes.Strychnine reversed the inhibition of the KCl-stimulated elevation in [Ca2+]c by GLY. In chloride-free buffer, GLY had no effect on the dipotassium hydrogen phosphate-induced increase in [Ca2+]c. Furthermore, GLY receptor alpha1 and beta subunit-immunoreactive spots were observed in cardiomyocytes, and GLY-evoked currents were blocked by strychnine.. Cardiomyocytes possess the glycine-gated chloride channel, through which GLY prevents the increase in [Ca2+]c and inhibits the TNFalpha production induced by LPS at high doses in neonatal rat cardiomyocytes. Topics: Animals; Calcium; Cardiotonic Agents; Cells, Cultured; Glycine; Glycine Agents; Isoproterenol; Lipopolysaccharides; Myocytes, Cardiac; Phosphates; Potassium Chloride; Potassium Compounds; Rats; Rats, Sprague-Dawley; Receptors, Glycine; Strychnine; Tumor Necrosis Factor-alpha | 2009 |