strychnine has been researched along with bemesetron* in 2 studies
2 other study(ies) available for strychnine and bemesetron
Article | Year |
---|---|
Bidirectional allosteric modulation of strychnine-sensitive glycine receptors by tropeines and 5-HT3 serotonin receptor ligands.
Specific binding of [3H]strychnine was studied on membranes prepared from rat spinal cord. Several antagonists and agonists of 5-HT3 receptors and tropane derivatives displaced [3H]strychnine binding with micromolar potencies. In the presence of 10 microM glycine a high affinity (nanomolar) component of displacement was also observed for the tropeines zatosetron, bemesetron and tropisetron. The displacing potency of glycine was also enhanced by these agents which are therefore termed glycine-positive. In contrast, atropine, SR 57227A, m-chlorophenylbiguanide, metoclopramide and granisetron are termed glycine-negative, because they decreased the displacing potency of glycine while glycine decreased the displacing potencies of atropine and metoclopramide. The dissociation of [3H]strychnine binding was accelerated in the presence of m-chlorophenylbiguanide, SR 57227A, atropine and zatosetron with a concentration dependence (EC50 values and Hill slopes) similar to their displacing effects. This demonstrates that the displacement of strychnine binding is associated with allosteric interactions between different binding sites. Structure-activity analysis revealed that the tropeine structure is essential for high affinity binding, and its substitutions (in scopolamine and cocaine) or its replacement (in ondansetron and metoclopramide) strongly decrease the potency and/or efficacy of allosteric modulation. High affinity modulatory sites for tropeines appear to be associated with the potentiation of ionophore function, but distinct from the low affinity channel blocking sites as well as from the binding sites of strychnine and glycine. Topics: Allosteric Regulation; Animals; Benzofurans; Binding, Competitive; Bridged Bicyclo Compounds, Heterocyclic; Glycine; Granisetron; Indoles; Ligands; Male; Medulla Oblongata; Ondansetron; Pons; Rats; Rats, Wistar; Receptors, Glycine; Receptors, Serotonin; Receptors, Serotonin, 5-HT3; Serotonin Antagonists; Serotonin Receptor Agonists; Spinal Cord; Strychnine; Tropanes; Tropisetron; Tubocurarine | 1998 |
Ligand-gated ion channels opened by 5-HT in molluscan neurones.
1. 5-Hydroxytryptamine (5-HT) activated a fast (70 ms to half maximum) and desensitizing inward current through non-selective channels conducting predominantly monovalent cations in neurons of Helix aspersa. 2. alpha-Methyl-5-HT was equipotent with 5-HT in activating this current, but the known selective agonists at vertebrate 5-HT3 receptors, 2-methyl-5-HT and arylbiguanides were ineffective (< 100 microM). 5-Methoxytryptamine which is inactive on vertebrate 5-HT3 receptors was a very weak agonist. 3. The responses were antagonized by the specific vertebrate 5-HT3 receptor blocker MDL-72222 (IC50 = 1 microM), but were only weakly affected by ondansetron (10 microM). The 5-HT2-type antagonist, ketanserin (< 5 microM) had no effect. The responses were also antagonized by the non-specific antagonists (+)-tubocurarine and strychnine. 4. Unitary currents through channels non-selective for monovalent cations, and with a conductance of 2pS, could be activated repeatedly by 5-HT or alpha-methyl-5-HT in outside-out patches from neurones exhibiting the fast 5-HT-activated current (I[5-HT]fast), even in the presence of 500 microM GDP-[beta S] in the recording pipette. This strongly supports direct-gating of these channels by 5-HT. The properties of these unitary currents resembled those of I[5-HT]fast. 5. The pharmacological properties of this molluscan 5-HT-operated, ligand-gated channel differed sufficiently from known vertebrate 5-HT3-type receptors to suggest that it represents a new class of 5-HT receptor. Topics: Animals; Calcium; Convulsants; Dose-Response Relationship, Drug; Electrophysiology; GTP-Binding Proteins; Helix, Snails; Ion Channel Gating; Ion Channels; Ketanserin; Neurons; Ondansetron; Receptors, Serotonin; Serotonin; Serotonin Antagonists; Strychnine; Tropanes | 1996 |