struvite has been researched along with potassium-phosphate* in 4 studies
4 other study(ies) available for struvite and potassium-phosphate
Article | Year |
---|---|
Modulation of struvite composition in full-scale nutrient recovery system using source-separated urine.
Using urine collected from a public restroom at a highway rest stop in Northern California, a full-scale nutrient recovery system involving a two-part system consisting of urine distillation followed by the precipitation of struvite crystals was characterized. The study examined the effects of different operational parameters of the coupled ammonium distillation and struvite process (CADSP) on the composition of struvite crystals and the overall nutrient recovery rates. System inputs that were investigated included the feed:steam (F:S), alkalinity source, and urinary pH. Overall, the findings demonstrate that the composition of the struvite produced can be varied by adjusting the preceding distillation unit process. Low F:S distillation operations result in high ammonium distillation rates which coincided with increased formation of magnesium potassium phosphate (MPP) while higher F:S operations led to conditions favorable to magnesium ammonium phosphate (MAP) precipitation. Therefore, low energy distillation operations (high F:S) are more conducive to MAP formation and high phosphorus recovery rates while high energy operations (Iow F:S) are more conducive to MPP formation. Sodium-based alkalinity sources should also be avoided in instances of low ammonium concentrations in the struvite precipitation tank to minimize the co-precipitation of magnesium sodium phosphate (MSP) with MPP. Topics: Magnesium; Nutrients; Potassium; Struvite | 2023 |
Influence of lime on struvite formation and nitrogen conservation during food waste composting.
This study aimed at investigating the feasibility of supplementing lime with struvite salts to reduce ammonia emission and salinity consequently to accelerate the compost maturity. Composting was performed in 20-L bench-scale reactors for 35days using artificial food waste mixed with sawdust at 1.2:1 (w/w dry basis), and Mg and P salts (MgO and K2HPO4, respectively). Nitrogen loss was significantly reduced from 44.3% to 27.4% during composting through struvite formation even with the addition of lime. Lime addition significantly reduced the salinity to less than 4mS/cm with a positive effect on improving compost maturity. Thus addition of both lime and struvite salts synergistically provide advantages to buffer the pH, reduce ammonia emission and salinity, and accelerate food waste composting. Topics: Calcium Compounds; Food; Nitrogen; Oxides; Phosphates; Potassium Compounds; Refuse Disposal; Soil; Struvite | 2016 |
Nitrogen conservation and acidity control during food wastes composting through struvite formation.
One of the main problems of food waste composting is the intensive acidification due to initial rapid fermentation that retards decomposition efficiency. Lime addition overcame this problem, but resulted in significant loss of nitrogen as ammonia that reduces the nutrient contents of composts. Therefore, this study investigated the feasibility of struvite formation as a strategy to control pH and reduce nitrogen loss during food waste composting. MgO and K2HPO4 were added to food waste in different molar ratios (P1, 1:1; P2, 1:2), and composted in 20-L composters. Results indicate that K2HPO4 buffered the pH in treatment P2 besides supplementing phosphate into the compost. In P2, organic decomposition reached 64% while the formation of struvite effectively reduced the nitrogen loss from 40.8% to 23.3% during composting. However, electrical conductivity of the compost increased due to the addition of Mg and P salts that requires further investigation to improve this technology. Topics: Acids; Electric Conductivity; Food; Hydrogen-Ion Concentration; Magnesium Compounds; Magnesium Oxide; Nitrogen; Phosphates; Potassium Compounds; Refuse Disposal; Soil; Struvite; Temperature | 2013 |
Enhancing struvite precipitation potential for ammonia nitrogen removal in municipal landfill leachate.
This study was conducted to improve struvite precipitation for NH4-N removal purpose in landfill leachate. For this purpose, we evaluated the effect of the feeding sequence of precipitating reagents (magnesium, orthophosphate, and buffering reagent) on NH4-N removal by forming struvite deposits. Struvite precipitation effectively proceeded by an addition of excess magnesium and phosphate sources followed by an addition of the buffering reagent, in which condition the local formation of inappropriate deposits or the contamination of the desired struvite was minimized. We also tested the effect of struvite addition as the seeding materials on NH4-N removal. Seed addition would increase the potential for the struvite crystal growth, which enhanced NH4-N removal performance in landfill leachate treatment. Topics: Ammonia; Chemical Precipitation; Magnesium Chloride; Magnesium Compounds; Nitrogen; Phosphates; Potassium Compounds; Refuse Disposal; Struvite; Water Pollutants, Chemical; Water Purification | 2007 |