stilbenes and sodium-sulfate

stilbenes has been researched along with sodium-sulfate* in 3 studies

Reviews

1 review(s) available for stilbenes and sodium-sulfate

ArticleYear
Perspectives of traditional Chinese medicine in pancreas protection for acute pancreatitis.
    World journal of gastroenterology, 2017, May-28, Volume: 23, Issue:20

    Acute pancreatitis (AP) is one of the most common diseases. AP is associated with significant morbidity and mortality, but it lacks specific and effective therapies. Traditional Chinese medicine (TCM) is one of the most popular complementary and alternative medicine modalities worldwide for the treatment of AP. The current evidence from basic research and clinical studies has shown that TCM has good therapeutic effects on AP. This review summarizes the widely used formulas, single herbs and monomers that are used to treat AP and the potential underlying mechanisms of TCM. Because of the abundance, low cost, and safety of TCM as well as its ability to target various aspects of the pathogenesis, TCM provides potential clinical benefits and a new avenue with tremendous potential for the future treatment of AP.

    Topics: Acute Disease; Animals; Anti-Inflammatory Agents; Apigenin; Artemisinins; Drugs, Chinese Herbal; Emodin; Flavanones; Glucuronates; Humans; Medicine, Chinese Traditional; Pancreas; Pancreatitis; Patient Safety; Phytotherapy; Plant Extracts; Pyrazines; Resveratrol; Rheum; Salvia miltiorrhiza; Stilbenes; Sulfates

2017

Other Studies

2 other study(ies) available for stilbenes and sodium-sulfate

ArticleYear
A biocomputing platform with electrochemical and fluorescent signal outputs based on multi-sensitive copolymer film electrodes with entrapped Au nanoclusters and tetraphenylethene and electrocatalysis of NADH.
    Physical chemistry chemical physics : PCCP, 2019, Nov-13, Volume: 21, Issue:44

    In this work, poly(N,N'-dimethylaminoethylmethacrylate-co-N-isopropylacrylamide) copolymer films were polymerized on the surface of Au electrodes with a facile one-step method, and Au nanoclusters (AuNCs) and tetraphenylethene (TPE) were synchronously embedded in the films, designated as P(DMA-co-NIPA)/AuNCs/TPE. Ferrocene dicarboxylic acid (FDA), an electroactive probe in solution displayed inverse pH- and SO42--sensitive on-off cyclic voltammetric (CV) behaviors at the film electrodes. The electrocatalytic oxidation of nicotinamide adenine dinucleotide (NADH) mediated by FDA in solution could substantially amplify the CV response difference between the on and off states. Moreover, the two fluorescence emission (FL) signals from the TPE constituent at 450 nm and AuNCs component at 660 nm in the films also demonstrated SO42-- and pH-sensitive behaviors. Based on the aforementioned results, a 4-input/9-output biomolecular logic circuit was constructed with pH, Na2SO4, FDA and NADH as the inputs, and the CV signals and the FL responses at 450 and 660 nm at different levels as the outputs. Additionally, some functional non-Boolean devices were elaborately designed on an identical platform, including a 1-to-2 decoder, a 2-to-1 encoder, a 1-to-2 demultiplexer and different types of keypad locks. This work combines copolymer films, bioelectrocatalysis, and fluorescence together so that more complicated biocomputing systems could be established. This work may pave a new way to develop advanced and sophisticated biocomputing logic circuits and functional devices in the future.

    Topics: Benzoates; Electrochemical Techniques; Electrodes; Ferrous Compounds; Gold; Hydrogen-Ion Concentration; Metal Nanoparticles; Metallocenes; NAD; Oxidation-Reduction; Polymers; Spectrometry, Fluorescence; Stilbenes; Sulfates

2019
Chemical modification of cysteine residues is a misleading indicator of their status as active site residues in the vitamin K-dependent gamma-glutamyl carboxylation reaction.
    The Journal of biological chemistry, 2004, Dec-24, Volume: 279, Issue:52

    The enzymatic activity of the vitamin K-dependent proteins requires the post-translational conversion of specific glutamic acids to gamma-carboxy-glutamic acid by the integral membrane enzyme, gamma-glutamyl carboxylase. Whether or not cysteine residues are important for carboxylase activity has been the subject of a number of studies. In the present study we used carboxylase with point mutations at cysteines, chemical modification, and mass spectrometry to examine this question. Mutation of any of the free cysteine residues to alanine or serine had little effect on carboxylase activity, although C343A mutant carboxylase had only 38% activity compared with that of wild type. In contrast, treatment with either thiol-reactive reagent 4-acetamido-4'-maleimidylstilbene-2,2'-disulfonic acid, disodium salt, or sodium tetrathionate, caused complete loss of activity. We identified the residues modified, using matrix-assisted laser desorption/ionization time of flight mass spectrometry, as Cys(323) and Cys(343). According to our results, these residues are on the cytoplasmic side of the microsomal membrane, whereas catalytic residues are expected to be on the lumenal side of the membrane. Carboxylase was partially protected from chemical modification by factor IXs propeptide. Although all mutant carboxylases bound propeptide with normal affinity, chemical modification caused a >100-fold decrease in carboxylase affinity for the consensus propeptide. We conclude that cysteine residues are not directly involved in carboxylase catalysis, but chemical modification of Cys(323) and Cys(343) may disrupt the three-dimensional structure, resulting in inactivation.

    Topics: Amino Acid Sequence; Binding Sites; Carbon-Carbon Ligases; Cysteine; Enzyme Inhibitors; Maleimides; Molecular Sequence Data; Molecular Structure; Mutagenesis, Site-Directed; Peptide Fragments; Point Mutation; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization; Stilbenes; Structure-Activity Relationship; Sulfates; Sulfhydryl Reagents; Sulfonic Acids; Trypsin; Vitamin K

2004