stilbenes has been researched along with phenoxy-radical* in 4 studies
4 other study(ies) available for stilbenes and phenoxy-radical
Article | Year |
---|---|
A new approach to elucidating repair reactions of resveratrol.
The repair by co-antioxidants of the phenoxy radical of resveratrol, the famous health-preserving ingredient of red wine, is a key step of radical scavenging cascades in nature. To generate that radical, we employed 355 nm photoionization as a direct and selective access that reduces the chemical complexity and is equally applicable in organized phases; to monitor it, we used its hitherto unreported absorption in the red where no other species in our systems interfere. With this novel approach, we measured rate constants and H/D kinetic isotope effects for the repairs by ascorbate, trolox (a vitamin E analogue) and 4-aminophenol, and identified the mechanisms as one-step hydrogen abstractions. Cysteine and glutathione are unreactive. In micellar solution (SDS), the repair by ascorbate is much slower and involves only the hydrophilic phenoxy moieties protruding from the micelles. The new experimental strategy also led to a reevaluation of extinction coefficients, rate constants and mechanisms. Topics: Aminophenols; Antioxidants; Ascorbic Acid; Chromans; Kinetics; Phenols; Resveratrol; Stilbenes; Wine | 2015 |
Hydroxyl radical reaction with trans-resveratrol: initial carbon radical adduct formation followed by rearrangement to phenoxyl radical.
In the reaction between trans-resveratrol (resveratrol) and the hydroxyl radical, kinetic product control leads to a short-lived hydroxyl radical adduct with an absorption maximum at 420 nm and a lifetime of 0.21 ± 0.01 μs (anaerobic acetonitrile at 25 °C) as shown by laser flash photolysis using N-hydroxypyridine-2(1H)-thione (N-HPT) as a "photo-Fenton" reagent. The transient spectra of the radical adduct are in agreement with density functional theory (DFT) calculations showing an absorption maximum at 442 or 422 nm for C2 and C6 hydroxyl adducts, respectively, and showing the lowest energy for the transition state leading to the C2 adduct compared to other radical products. From this initial product, the relative long-lived 4'-phenoxyl radical of resveratrol (τ = 9.9 ± 0.9 μs) with an absorption maximum at 390 nm is formed in a process with a time constant (τ = 0.21 ± 0.01 μs) similar to the decay constant for the C2 hydroxyl adduct (or a C2/C6 hydroxyl adduct mixture) and in agreement with thermodynamics identifying this product as the most stable resveratrol radical. The hydroxyl radical adduct to phenoxyl radical conversion with concomitant water dissociation has a rate constant of 5 × 10(6) s(-1) and may occur by intramolecular hydrogen atom transfer or by stepwise proton-assisted electron transfer. Photolysis of N-HPT also leads to a thiyl radical which adds to resveratrol in a parallel reaction forming a sulfur radical adduct with a lifetime of 0.28 ± 0.04 μs and an absorption maximum at 483 nm. Topics: Carbon; Electron Transport; Hydroxyl Radical; Isomerism; Models, Molecular; Phenols; Photolysis; Protons; Quantum Theory; Resveratrol; Spectrophotometry; Stilbenes | 2012 |
The effects of resveratrol and selected metabolites on the radiation and antioxidant response.
Excess reactive oxygen species (ROS) generated from ionizing radiation (IR) or endogenous sources like cellular respiration and inflammation produce cytotoxic effects that can lead to carcinogenesis. Resveratrol (RSV), a polyphenol with antioxidant and anticarcinogenic capabilities, has shown promise as a potential radiation modifier. The present study focuses on examining the effects of RSV or RSV metabolites as a radiation modifier in normal tissue. RSV or a RSV metabolite, piceatannol (PIC) did not protect human lung fibroblasts (1522) from the radiation-induced cell killing. Likewise, neither RSV nor PIC afforded protection against lethal total body IR in C3H mice. Additional research has shown protection in cells against hydrogen peroxide when treated with RSV. Therefore, clonogenic survival was measured in 1522 cells with RSV and RSV metabolites. Only the RSV derivative, piceatannol (PIC), showed protection against hydrogen peroxide mediated cytotoxicity; whereas, RSV enhanced hydrogen peroxide sensitivity at a 50 µM concentration; the remaining metabolites evaluated had little to no effect on survival. PIC also showed enhancement to peroxide exposure at a higher concentration (150 µM). A potential mechanism for RSV-induced sensitivity to peroxides could be its ability to block 1522 cells in the S-phase, which is most sensitive to hydrogen peroxide treatment. In addition, both RSV and PIC can be oxidized to phenoxyl radicals and quinones, which may exert cytotoxic effects. These cytotoxic effects were abolished when HBED, a metal chelator, was added. Taken together RSV and many of its metabolic derivatives are not effective as chemical radioprotectors and should not be considered for clinical use. Topics: Animals; Antioxidants; Cell Cycle; Cell Survival; Dose-Response Relationship, Drug; Edetic Acid; Female; Fibroblasts; Humans; Hydrogen Peroxide; Mice; Mice, Inbred C3H; Oxidative Stress; Phenols; Quinones; Radiation-Protective Agents; Resveratrol; Stilbenes; tert-Butylhydroperoxide; Whole-Body Irradiation | 2011 |
The catecholic antioxidant piceatannol is an effective nitrosation inhibitor via an unusual double bond nitration.
Piceatannol (1) was found to be more effective than caffeic acid, an established antinitrosating agent, in inhibiting N-nitrosation of 2,3-diaminonaphthalene. Product analysis of the reaction mixture of 1 (20 microM) with nitrite ions (80 microM) at pH 3.0 and at 37 degrees C showed conversion to a single major nitration product, (E)-3,3',4,5'-tetrahydroxy-beta-nitrostilbene (2) (68% yield). This would result from an unexpected nitration at the double bond sector via the 4-phenoxyl radical, which was analyzed at the unrestricted DFT level. Topics: Antioxidants; Caffeic Acids; Catechols; Ions; Molecular Conformation; Naphthalenes; Nitrates; Nitrites; Nitrosation; Phenols; Plant Oils; Stilbenes | 2006 |