stilbenes has been researched along with ethoxyresorufin* in 4 studies
4 other study(ies) available for stilbenes and ethoxyresorufin
Article | Year |
---|---|
CYP1B1 detection.
This unit describes procedures for measuring CYP1B1 gene expression by reverse transcription real-time PCR (qRT-PCR), CYP1B1 protein levels by western blotting, and CYP1B1 enzyme activity through conversion of 7-ethoxyresorufin substrate. To achieve specific measurement of CYP1B1 activity in the presence of CYP1A1 and CYP1A2, CYP1B1 inhibition and a subtractive approach have been adopted. 2,4,3',5'-Tetramethoxystilbene (TMS) is a potent and selective competitive inhibitor of CYP1B1 with an IC₅₀ of 3 nM for EROD and ~90 nM for E2 4-hydroxylation. Binding studies with purified CYP1B1 suggests that TMS interferes in the proximity of the heme region of CYP1B1 with high affinity. Compared to other potent inhibitors such as α-naphthoflavone, which is a known CYP1 family inhibitor with no selectivity between CYP1B1 and CYP1A2, TMS is ~50- and 520-fold selective for inhibition of CYP1B1 when compared to CYP1A1 and CYP1A2, respectively. Thus, TMS can serve as a helpful chemical scalpel for dissecting CYP1B1 activity from the overall activity of CYP1 family members against ethoxyresorufin. Topics: Aryl Hydrocarbon Hydroxylases; Blotting, Western; Cytochrome P-450 CYP1B1; Enzyme Inhibitors; Estradiol; Gene Expression; Humans; Oxazines; Polymerase Chain Reaction; Stilbenes; Toxicology | 2012 |
Regulation of CYP1A1 gene expression by the antioxidant tert-butylhydroquinone.
CYP1A1, a major phase I enzyme, plays an important role in the metabolism of polycyclic aromatic hydrocarbons and in the chemical activation of xenobiotics to carcinogenic derivatives. The phenolic antioxidant tert-butylhydroquinone (tBHQ), often used as a food preservative, is generally considered to act only as a mono-functional inducer of phase II enzymes, thereby exerting chemo-protection. However, we recently observed that tBHQ elevated the activity of an aryl hydrocarbon receptor (AhR) response element (DRE)-driven luciferase reporter in human colon carcinoma cells (Caco-2). Therefore, we studied the effects of tBHQ on the activity of a DRE-driven reporter, CYP1A1 mRNA expression, and CYP1A enzyme activity in Caco-2 cells and human HepG2 hepatoma cells. We found tBHQ caused induction of reporter activity and CYP1A1 expression and activity in Caco-2 and HepG2 cells. Moreover, tBHQ combined with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) increased reporter activity and mRNA expression in Caco-2 cells in an additive manner. By contrast, tBHQ decreased TCDD-mediated induction of reporter activity and CYP1A1 mRNA expression in HepG2 cells. Resveratrol, an AhR antagonist, repressed the induction of CYP1A1 by tBHQ. Cotransfection of HepG2 cells with a dominant negative AhR nuclear translocator mutant abolished the tBHQ-induced CYP1A1 reporter activity. These findings indicate that CYP1A1 may be induced by the antioxidant tBHQ via an AhR-dependent mechanism. Topics: Antioxidants; Aryl Hydrocarbon Receptor Nuclear Translocator; Caco-2 Cells; Cell Line; Cytochrome P-450 CYP1A1; Dose-Response Relationship, Drug; Gene Expression Regulation, Enzymologic; Humans; Hydroquinones; Mutation; Oxazines; Promoter Regions, Genetic; Receptors, Aryl Hydrocarbon; Resveratrol; RNA, Messenger; Stilbenes; Transfection | 2006 |
Differential inhibition and inactivation of human CYP1 enzymes by trans-resveratrol: evidence for mechanism-based inactivation of CYP1A2.
trans-Resveratrol (3,5,4'-trihydroxy-trans-stilbene) has been reported to confer chemoprotection against 7,12-dimethylbenz[a]anthracene (DMBA)-induced carcinogenicity in a murine model. A potential mechanism for this effect by trans-resveratrol is inhibition of DMBA-bioactivating cytochrome P450 (CYP) enzymes such as CYP1B1, CYP1A1, and CYP1A2. In the present study, we examined in detail the in vitro inhibitory effects of trans-resveratrol on these three human CYP enzymes. trans-Resveratrol decreased 7-ethoxyresorufin O-dealkylation activity catalyzed by human recombinant CYP1B1, CYP1A1, and CYP1A2 in a concentration-dependent manner and by a mixed type of inhibition. This direct inhibition was enzyme-selective, as judged by the differences in the apparent K(i) values (0.8 +/- 0.1 microM, 1.2 +/- 0.1 microM, and 15.5 +/- 1.1 microM for CYP1B1, CYP1A1, and CYP1A2, respectively). Preincubating recombinant CYP1A2 or human liver microsomes with trans-resveratrol and NADPH prior to the initiation of substrate oxidation resulted in a time- and concentration-dependent decrease in catalytic activity. The inactivation of liver microsomal CYP1A2 by trans-resveratrol required NADPH, was not reversible by dialysis, and was not affected by the trapping agents glutathione, N-acetylcysteine, catalase, or superoxide dismutase, but was attenuated by a CYP1A2 substrate, imipramine. Analysis of a panel of individual human liver microsomes showed intersample differences in the response to the in vitro inactivation by trans-resveratrol. In contrast to CYP1A2, CYP1B1 was not subject to inactivation by this compound and the reduction in CYP1A1 activity was time- but not concentration-dependent. In summary, trans-resveratrol differentially inhibited human CYP1 enzymes and this occurred by two distinct mechanisms: direct inhibition (mainly CYP1B1 and CYP1A1) and mechanism-based inactivation (CYP1A2). Topics: Aryl Hydrocarbon Hydroxylases; Binding, Competitive; Cytochrome P-450 CYP1A1; Cytochrome P-450 CYP1A2; Cytochrome P-450 CYP1A2 Inhibitors; Cytochrome P-450 CYP1B1; Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Enzyme Inhibitors; Humans; In Vitro Techniques; Kinetics; Microsomes, Liver; NADP; Oxazines; Recombinant Proteins; Resveratrol; Stilbenes; Substrate Specificity | 2001 |
Trans-resveratrol modulates the catalytic activity and mRNA expression of the procarcinogen-activating human cytochrome P450 1B1.
The present study was performed to determine if trans-resveratrol (3,5,4'-trihydroxy-trans-stilbene) modulates the catalytic activity and gene expression of cytochrome P450 1B1 (CYP1B1). In vitro, trans-resveratrol decreased human recombinant CYP1B1-catalyzed 7-ethoxyresorufin O-dealkylation activity, with an IC50 value of 1.4 +/- 0.2 microM (mean +/- SEM). Enzyme kinetic analysis indicated that trans-resveratrol inhibited CYP1B1 enzyme activity by a mixed-type inhibition and the apparent Ki was 0.75 +/- 0.06 microM. To determine if trans-resveratrol modulates constitutive CYP1B1 gene expression, cultured MCF-7 human breast carcinoma cells were treated with trans-resveratrol. As indicated by RT-PCR analysis, treatment of MCF-7 cells with 10 microM trans-resveratrol decreased relative CYP1B1 mRNA levels after 5 h, but not after 1.5 or 3 h, of exposure. trans-Resveratrol treatment at 5, 7.5, 10, or 20 microM for 5 h produced a concentration-dependent decrease in CYP1B1 mRNA levels. The extent of suppression was approximately 50% at 20 microM concentration. The suppressive effect was not a consequence of a toxic response to the compound as assessed by a cell proliferation assay. Overall, our novel finding that trans-resveratrol inhibits the catalytic activity and suppresses the constitutive gene expression of CYP1B1 leads to the possibility that this nutraceutical confers protection against toxicity and carcinogenicity induced by compounds that undergo CYP1B1-catalyzed bioactivation. Topics: Anticarcinogenic Agents; Aryl Hydrocarbon Hydroxylases; Catalysis; Cytochrome P-450 CYP1B1; Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Dose-Response Relationship, Drug; Humans; Oxazines; Resveratrol; RNA, Messenger; Stilbenes; Tumor Cells, Cultured | 2000 |