stilbenes has been researched along with epsilon-viniferin* in 77 studies
2 review(s) available for stilbenes and epsilon-viniferin
Article | Year |
---|---|
Beneficial Effects of ε-Viniferin on Obesity and Related Health Alterations.
Viniferin is a phenolic compound belonging to the group of stilbenoids. In particular, ε-viniferin is a dimer of resveratrol, found in many plant genders, among which grapes ( Topics: Animals; Diabetes Mellitus, Type 2; Female; Humans; Male; Mice; Obesity; Resveratrol; Stilbenes; Vitis | 2023 |
In the shadow of resveratrol: biological activities of epsilon-viniferin.
Stilbenes are secondary metabolites belonging to the polyphenol family. Those compounds are derived from the glycosylation, prenylation, methoxylation, hydroxylation, or also oligomerization of the well-known trans-resveratrol. One of them, trans-epsilon-viniferin (ε-viniferin), is a trans-resveratrol dimer that arouses the interest of researchers in the field of human health. The biosynthesis of this molecule in various plant species, particularly high in the Vitaceae family, explains its presence in some red wines, which represent the main source of ε-viniferin in the human diet. Although bioavailability studies have shown poor absorption and high metabolism of this stilbene, multiple studies demonstrated its biological properties. The ε-viniferin exhibits strong activities against inflammatory and oxidative stress. Moreover, various studies have reported great activity of this compound not only in a wide range of disorders and diseases, such as cancer, obesity, and its associated disorders, but also in vascular diseases and neurodegeneration, for which the pathophysiology is closely related to the state of oxidation and inflammation. This review provides a state of art of the main activities of ε-viniferin demonstrated in vitro and in vivo, highlighting that this resveratrol dimer could be a promising candidate for future functional foods or supplement foods used for the management of many chronic diseases of concern in terms of public health. Topics: Benzofurans; Humans; Resveratrol; Stilbenes | 2022 |
1 trial(s) available for stilbenes and epsilon-viniferin
Article | Year |
---|---|
The Oral Bioavailability of Trans-Resveratrol from a Grapevine-Shoot Extract in Healthy Humans is Significantly Increased by Micellar Solubilization.
Grapevine-shoot extract Vineatrol30 contains abundant resveratrol monomers and oligomers with health-promoting potential. However, the oral bioavailability of these compounds in humans is low (˂1-2%). The aim of this study was to improve the oral bioavailability of resveratrol from vineatrol by micellar solubilization.. Twelve healthy volunteers (six women, six men) randomly ingested a single dose of 500 mg vineatrol (30 mg trans-resveratrol, 75 mg trans-ε-viniferin) as native powder or liquid micelles. Plasma and urine were collected at baseline and over 24 h after intake. Resveratrol and viniferin were analyzed by HPLC. The area under the plasma concentration-time curve (AUC) and mean maximum plasma trans-resveratrol concentrations were 5.0-fold and 10.6-fold higher, respectively, after micellar supplementation relative to the native powder. However, no detectable amounts of trans-ε-viniferin were found in either plasma or urine. The transepithelial permeability of trans-resveratrol and trans-ε-viniferin across differentiated Caco-2 monolayers was consistent to the absorbed fractions in vivo.. The oral bioavailability of trans-resveratrol from the grapevine-shoot extract Vineatrol30 was significantly increased using a liquid micellar formulation, without any treatment-related adverse effects, making it a suitable system for improved supplementation of trans-resveratrol. Topics: Antineoplastic Agents, Phytogenic; Area Under Curve; Benzofurans; Biomarkers; Caco-2 Cells; Cross-Over Studies; Dietary Supplements; Enterocytes; Female; Humans; Intestinal Absorption; Male; Micelles; Phenols; Plant Extracts; Plant Shoots; Renal Elimination; Resveratrol; Single-Blind Method; Solubility; Stilbenes; Vitis | 2018 |
74 other study(ies) available for stilbenes and epsilon-viniferin
Article | Year |
---|---|
An automated accelerated salting-out assisted solvent extraction (A-ASASE) of stilbenoids from Vitis vinifera L. branches: False proof or a proof of concept?
An automated accelerated salting-out assisted solvent extraction (A-ASASE) was developed. This approach made full use of the advantages of both the accelerated solvent extraction (ASE) technique and salting-out assisted liquid-liquid extraction (SALLE), without any modifications at the level of the ASE machine. The A-ASASE combined an automated extraction at high temperature/pressure and an enrichment step using eco-friendly solvents (e.g., water and ethanol) in a fully integrated and simple way that required only low volumes of solvents. The A-ASASE was successfully applied to extract three stilbenoids, namely E-resveratrol, E-ε-viniferin and E-vitisin B, present in grapevine (Vitis vinifera L.) by-products as a proof-of-concept compound. First, factors affecting the yield of stelbenoids by SALLE were investigated by means of a design of experiment model (DOE). The SALLE was then incorporated into ASE. Various ASE operational parameters such as temperature and number of cycles were also investigated. The highest yield was obtained using a mixture of ethanol-water, 70:30 (v/v) at 60 °C, using three extraction cycles and with 5 min of contact each. The highest yields of stilbenoids were 5.87 ± 0.28 g kg Topics: Chromatography, High Pressure Liquid; Ethanol; Liquid-Liquid Extraction; Resveratrol; Sodium Chloride; Solvents; Stilbenes; Vitis; Water | 2024 |
Temperature and light conditions affect stability of phenolic compounds of stored grape cane extracts.
This study aimed to determine the stability of PCs in grape canes extracts stored at different temperatures and light conditions. The PCs composition was monitored every-two weeks during three months by liquid chromatography coupled to diode array and fluorescence detectors (LC-DAD-FLD). Initially, stilbenes represented 87 % of total PCs. Storage at -20 and 5 °C reduced PCs 8 and 6 %, respectively. When extracts were exposed to 25 and 40 °C, the degradation of (+)-catechin and (-)-epicatechin was faster than under lower temperatures, and light accelerated the degradation kinetics. trans-piceatannol showed particularly sensitive to temperature increase, being mostly degraded after two weeks stored at 40 °C. Conversely, degradation of trans-resveratrol and ε-viniferin was mostly catalyzed by light, since nearly 70 % of them were degraded at 40 °C under light, in comparison with a 23 % reduction of trans-resveratrol and no changes of ε-viniferin at 40 °C in darkness. Topics: Canes; Phenols; Resveratrol; Stilbenes; Temperature; Vitis | 2023 |
Chiral analysis of E-ε-viniferin enantiomers, towards a new chemotaxonomic marker of the vine.
The accurate characterization of grapevine cultivars (Vitis vinifera) is crucial for grape growers, winemakers, wine sellers, consumers and authorities, considering that mistakes could involve significant damage to the wine economic system. To avoid any misunderstanding, morphological, molecular and chemical tools are developed to positively identify grape varieties.. E-ε-viniferin is a stilbene dimer mainly present in the woody part of grapevine and present as a mixture of two enantiomers: (7aR, 8aR)-(-)-E-ε-viniferin (1) and (7aS, 8aS)-(+)-E-ε-viniferin (2). In addition to phenotypic and genotypic approaches, a chemotaxonomic method using E-ε-viniferin enantiomers as chemical markers of grapevine cultivars was investigated. The isolation and purification of E-ε-viniferin enantiomers by preparative high-performance liquid chromatography (HPLC) and chiral HPLC from 14 red and eight white grapevine cane cultivars enabled us to determine the proportion of each enantiomer and therefore to calculate the enantiomeric excess for each variety. The relative abundance of each E-ε-viniferin enantiomer permitted us to distinguish grape varieties, as well as to establish cultivar relationships and patterns through statistical analysis.. This pioneering work highlighting the enantiomeric excess of E-ε-viniferin as a chemical marker of grapevine paves the way for further studies to understand what mechanisms are involved in the production of these enantiomers in grapevine. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. Topics: Benzofurans; Stilbenes; Vitis; Wine | 2023 |
Antifungal Activities of a Grapevine Byproduct Extract Enriched in Complex Stilbenes and Stilbenes Metabolization by
Grapevine co-products, as canes, represent a source of compounds of interest to control vineyard diseases with a sustainable approach. We chose to study an extract that we produced from grapevine trunk and roots. This extract, enriched in complex stilbenes, strongly reduced mycelial growth and spore germination of Topics: Antifungal Agents; Plant Extracts; Resveratrol; Stilbenes; Vitis | 2023 |
Resveratrol, ε-Viniferin, and Vitisin B from Vine: Comparison of Their In Vitro Antioxidant Activities and Study of Their Interactions.
The control of oxidative stress with natural active substances could limit the development of numerous pathologies. Our objective was to study the antiradical effects of resveratrol (RSV), ε-viniferin (VNF), and vitisin B (VB) alone or in combination, and those of a standardized stilbene-enriched vine extract (SSVE). In the DPPH-, FRAP-, and NO-scavenging assays, RSV presented the highest activity with an IC Topics: Antioxidants; Resveratrol; Stilbenes | 2023 |
α-Viniferin and ε-Viniferin Inhibited TGF-β1-Induced Epithelial-Mesenchymal Transition, Migration and Invasion in Lung Cancer Cells through Downregulation of Vimentin Expression.
Resveratrol has well-known anticancer properties; however, its oligomers, including α-viniferin, ε-viniferin, and kobophenol A, have not yet been well investigated. This is the first study examining the anti-epithelial-mesenchymal transition (EMT) effects of α-viniferin and ε-viniferin on A549, NCI-H460, NCI-H520, MCF-7, HOS, and U2OS cells. The results showed that α-viniferin and ε-viniferin significantly inhibited EMT, invasion and migration in TGF-β1- or IL-1β-induced non-small cell lung cancer. α-Viniferin and ε-viniferin also reversed TGF-β1-induced reactive oxygen species (ROS), MMP2, vimentin, Zeb1, Snail, Topics: Animals; Benzofurans; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Cell Movement; Down-Regulation; Epithelial-Mesenchymal Transition; Humans; Lung Neoplasms; Mice; Stilbenes; Transforming Growth Factor beta1; Vimentin | 2022 |
Ultrasonic-assisted extraction and adsorption separation: Large-scale preparation of trans-ε-Viniferin, suffruficosol B and trans-Gnetin H for the first time.
In this study, a Standard Operating Procedure (SOP) for the large-scale extraction, enrichment, and separation of suffruticosol B (SB), trans-ε-Viniferin (TV), trans-gnetin H (TG) from oil tree peony seeds shell (PSS) was successfully constructed. The ultrasonic-assisted extraction (UAE), macroporous adsorption resin (MAR), and column chromatography (CC) were employed to extract, enrich and separate SB, TV and TG from PSS, and the conditions were optimized. The results implied that SB (1.6937 g), TV (0.5884 g) and TG (3.8786 g) with the purity of 99.67 %, 99.32 % and 98.54 %, respectively, were obtained after the extraction, enrichment and separation. The total yields of the SB, TV and TG were 0.61 mg/g, 0.02 mg/g and 6.64 mg/g with the total extraction rates at 70.55 %, 69.77 % and 78.36 %, respectively. This is the first report on the large-scale extraction, enrichment and separation of oligostilbenes. The SOP in this paper could produce high purity SB, TV and TG, and provide a new idea for PSS as a new oligostilbene resource. The study expands the new development and research field of PSS and provides theoretical support for the green utilization of oil tree peony. Topics: Adsorption; Benzofurans; Paeonia; Resorcinols; Stilbenes; Ultrasonics | 2022 |
ε-Viniferin and α-viniferin alone or in combination induced apoptosis and necrosis in osteosarcoma and non-small cell lung cancer cells.
This study investigated the effects and molecular mechanisms of ε-viniferin and α-viniferin in non-small cell lung cancer cell line A549, melanoma cell line A2058, and osteosarcoma cell lines HOS and U2OS. Results showed ε-viniferin having antiproliferative effects on HOS, U2OS, and A549 cells. Compared with ε-viniferin at the same concentration, α-viniferin had higher antiproliferative effects on HOS cells, but not the same effect on U2OS and A549 cells. Lower dose combination of α-viniferin and ε-viniferin had more synergistic effects on A549 cells than either drug alone. α-Viniferin induced apoptosis in HOS cells by decreasing expression of phospho-c-Jun-N-terminal kinase 1/2 (p-JNK1/2) and increasing expression of cleaved Poly (ADP-ribose) polymerase (PARP), whereas α-viniferin in combination with ε-viniferin induced apoptosis in A549 cells by decreasing expression of phospho-protein kinase B (p-AKT) and increasing expression of cleaved PARP and cleaved caspase-3. ε-Viniferin and α-viniferin have not been studied using in vivo tumor models for cancer. This research is the first showing that ε-viniferin treatment resulted in significant inhibition of tumor growth in A549-cell xenograft-bearing nude mice compared with the control group. Consequently, ε-viniferin and α-viniferin may prove to be new approaches and effective therapeutic agents for osteosarcoma and lung cancer treatment. Topics: A549 Cells; Antineoplastic Agents; Apoptosis; Benzofurans; Carcinoma, Non-Small-Cell Lung; Humans; Lung Neoplasms; Necrosis; Osteosarcoma; Stilbenes | 2021 |
Combination of Trans-Resveratrol and ε-Viniferin Induces a Hepatoprotective Effect in Rats with Severe Acute Liver Failure via Reduction of Oxidative Stress and MMP-9 Expression.
Stilbenes are a major grapevine class of phenolic compounds, known for their biological activities, including anti-inflammatory and antioxidant, but never studied in combination. We aimed to evaluate the effect of trans-resveratrol + ε-viniferin as an antioxidant mixture and its role in inflammatory development an in vivo model of severe acute liver failure induced with TAA. Trans-resveratrol + trans-ε-viniferin (5 mg/kg each) was administered to Wistar rats. Resveratrol + ε-viniferin significantly decreased TBARS and SOD activity and restored CAT and GST activities in the treated group. This stilbene combination reduced the expression of TNFα, iNOS, and COX-2, and inhibited MMP-9. The combination of resveratrol + ε-viniferin had a hepatoprotective effect, reducing DNA damage, exhibiting a protective role on the antioxidant pathway by altering SOD, CAT, and GST activities; by downregulating TNFα, COX-2, and iNOS; and upregulating IL-10. Our results suggested that adding viniferin to resveratrol may be more effective in hepatoprotection than resveratrol alone, opening a new perspective on using this stilbene combination in functional diets. Topics: Animals; Benzofurans; Disease Models, Animal; Liver; Liver Failure, Acute; Matrix Metalloproteinase 9; Oxidative Stress; Protective Agents; Rats; Rats, Wistar; Resveratrol; Stilbenes | 2021 |
Characterization and Optimization of the Tyrosinase Inhibitory Activity of
Topics: Benzofurans; Biological Assay; Chromatography, High Pressure Liquid; Enzyme Inhibitors; Mass Spectrometry; Monophenol Monooxygenase; Phenols; Plant Roots; Stilbenes; Vitis | 2021 |
The anti-inflammatory effect of ε-viniferin by specifically targeting formyl peptide receptor 1 on human neutrophils.
The uncontrol respiratory burst in neutrophils can lead to inflammation and tissue damage. This study investigates the effect and the underlying mechanism of ε-viniferin, a lignan from the root of Vitis thunbergii var. thunbergii, inhibits N-formyl-L-methionyl-L-leucyl-l-phenylalanine (fMLP) induced respiratory burst by antagonizing formyl peptide receptor 1 in human neutrophils. Briefly, ε-viniferin specifically inhibited fMLP (0.1 μM: formyl peptide receptor 1 agonist or 1 μM: formyl peptide receptor 1, 2 agonist)-induced superoxide anion production in a concentration-dependent manner (IC Topics: Amino Acid Sequence; Anti-Inflammatory Agents; Benzofurans; Calcium; Dose-Response Relationship, Drug; Drug Synergism; Humans; Molecular Targeted Therapy; Neutrophils; Oligopeptides; Receptors, Formyl Peptide; Stilbenes; Superoxides | 2021 |
Resveratrol and its dimers ε-viniferin and δ-viniferin in red wine protect vascular endothelial cells by a similar mechanism with different potency and efficacy.
Red wine compounds have been reported to reduce the rate of atherosclerosis by inducing nitric oxide (NO) production and antioxidant enzyme expression in vascular endothelial cells (VECs). The present study compared the effects of the three red wine compounds resveratrol and its dimers, ε-viniferin and δ-viniferin, on VECs function for the first time. Both 5 μM ε-viniferin and δ-viniferin, but not 5 μM resveratrol, significantly stimulated wound repair of VECs. Increased levels of wound repair induced by 10 and 20 μM ε-viniferin were significantly higher than those stimulated by 10 and 20 μM resveratrol, respectively. These stimulatory effects of the three compounds were suppressed by the NO synthase inhibitor L-NAME. When VECs were exposed to each compound, endothelial NO synthase was activated and the expression of sirtuin 1 (SIRT1) and HO-1 was induced. Addition of the SIRT1 and HO-1 inhibitors EX527 and ZnPPiX, respectively, suppressed wound repair stimulated by the three compounds, demonstrating that SIRT1 and HO-1 are involved in these wound repair processes. Furthermore, each compound induced the suppression of H Topics: Animals; Antioxidants; Atherosclerosis; Benzofurans; Carbazoles; Catalase; Cell Line; Cell Survival; Dimerization; Endothelial Cells; Enzyme Inhibitors; Gene Expression Regulation; Heme Oxygenase-1; Humans; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nitric Oxide Synthase Type III; Protoporphyrins; Resorcinols; Resveratrol; Sirtuin 1; Stilbenes; Swine; Wine | 2020 |
Stability testing of resveratrol and viniferin obtained from Vitis vinifera L. by various extraction methods considering the industrial viewpoint.
Solid by-products generated in the winemaking process, can comprise valuable bioactive substances such as resveratrol and viniferin, which can be used in whole range of sectors including medicine, pharmacy, cosmetic industry etc. The changes in content of those stilbenes in extracts obtained by maceration and Soxhlet extraction were monitored using newly modified and validated high-performance liquid chromatography-mass spectrometry method which was proved to be accurate, reproducible, and efficient for their determination. The yields of individual bioactive compounds isolated from winery by-products are crucially dependent on the conditions of used extraction techniques. From this point of view, stability testing including light exposure, elevated temperature, and storage for longer time periods in the solution, represents the basis for optimizing conditions of extraction methods of resveratrol and trans-ε-viniferin. High temperature is beneficial for better release of thermally more stable stilbenes such as trans-resveratrol and trans-ε-viniferin but its application for prolonged time periods can be destructive. Light stress conditions cause the formation of otherwise unavailable cis-ε-viniferin by dimerization and photoisomerization of trans- stilbenes. Topics: Benzofurans; Chromatography, High Pressure Liquid; Mass Spectrometry; Plant Extracts; Resveratrol; Stilbenes; Vitis | 2020 |
Percutaneous absorption of resveratrol and its oligomers to relieve psoriasiform lesions: In silico, in vitro and in vivo evaluations.
Resveratrol was shown to exert anti-inflammatory effects in experimental models of psoriasis. Several natural oligomers of resveratrol have been extracted from plants. We investigated the antipsoriatic activity of topical administration of resveratrol oligomers and explored the effect of the number of resveratrol subunits on skin absorption to establish the structure-permeation relationship (SPR). Three oligomers, ε-viniferin (dimer), ampelopsin C (trimer) and vitisin A (tetramer), extracted from Vitis thunbergii root were compared to the resveratrol glycoside polydatin. Delivery to porcine skin was assessed in vitro using the Franz cell. Keratinocytes activated with imiquimod (IMQ) were utilized to evaluate cytokine/chemokine inhibition. Topical application of resveratrol and oligomers was characterized in vivo by assessing cutaneous absorption, skin physiology, proinflammatory mediator expression, and histopathology in IMQ-treated mice. Skin deposition decreased as the molecular size and lipophilicity of the permeants increased. Resveratrol exhibited highest absorption, followed by ε-viniferin. The monomers resveratrol and polydatin exhibited higher flux across skin than the larger oligomers. In silico modeling revealed the permeants that strongly interacted with stratum corneum (SC) lipids exhibited lower transport to viable skin and the receptor compartment. In vitro, resveratrol and its derivatives had comparable ability to inhibit IMQ-induced IL-1β, IL-6, and CXCL8 secretion in activated keratinocytes. In vivo, topically applied ε-viniferin accumulated at higher levels than resveratrol (0.067 versus 0.029 nmol/mg) in psoriasis-like mouse skin with impaired barrier capacity. Topical ε-viniferin alleviated psoriasiform symptoms and reduced IL-23 secretion (by 58% vs. 37%) more effectively than resveratrol. ε-Viniferin has potential as an anti-inflammatory agent to prevent or treat psoriasis. Topics: Administration, Topical; Animals; Anti-Inflammatory Agents; Benzofurans; Chemistry, Pharmaceutical; Chemokines; Cytokines; Flavonoids; Glucosides; Inflammation Mediators; Keratinocytes; Mice; Phenols; Plant Extracts; Psoriasis; Resveratrol; Skin Absorption; Stilbenes; Swine | 2020 |
ε-Viniferin, a promising natural oligostilbene, ameliorates hyperglycemia and hyperlipidemia by activating AMPK
ε-Viniferin (VNF), a naturally occurring oligostilbene (a resveratrol dimer), is mainly found in grapes and red wines. However, unlike resveratrol, the biological activity of VNF has not been widely studied. This study was conducted to investigate the beneficial effects of VNF on hyperglycemia and hyperlipidemia and further to reveal the underlying mechanism. The ameliorative effects of VNF in high-fat-diet and streptozotocin-induced type 2 diabetic rats were assessed physiologically, biochemically and histologically after oral administration of VNF (30 mg kg-1 and 60 mg kg-1) for 8 weeks. Western blotting and immunohistochemistry experiments were performed to determine the effects of VNF on the AMPK phosphorylation levels in the livers of diabetic rats. Molecular docking and molecular dynamics simulation were further performed to study the molecular-level interaction between VNF and AMPK. Meanwhile, the protective effects of VNF on the liver and kidney were also evaluated. The results showed that the VNF treatment caused a significant decrease in the concentrations of fasting blood glucose (FBG), total cholesterol (TC), triglyceride (TG), and low density lipoprotein-cholesterol (LDL-C), and improved the glucose tolerance of diabetic rats. In addition, the liver and kidney damage indices such as alanine aminotransferase (ALT), aspartate aminotransaminase (AST), creatinine (CR), and blood urea nitrogen (BUN) were also lowered and improved. Moreover, VNF could increase the AMPK activation and attenuate histopathological changes in the liver of diabetic rats. The molecular docking and molecular dynamics simulation results revealed for the first time that VNF bound to the hinge region between the α- and β-units of AMPK and interacted with the active site of AMPK. In conclusion, VNF can effectively improve hyperglycemia and hyperlipidemia and exhibit protective effects on the liver and kidney functions. The underlying mechanism of VNF in hyperglycemia and hyperlipidemia may be related to the activation of AMPK in vivo. Our findings indicate that VNF is a potentially useful natural agent for the treatment of metabolic diseases, especially type 2 diabetes and hyperlipidemia. Topics: AMP-Activated Protein Kinases; Animals; Benzofurans; Blood Glucose; Cholesterol, LDL; Diet, High-Fat; Humans; Hyperglycemia; Hyperlipidemias; Hypoglycemic Agents; Hypolipidemic Agents; Liver; Male; Rats; Rats, Sprague-Dawley; Stilbenes; Triglycerides | 2020 |
Plant-Derived Purification, Chemical Synthesis, and In Vitro/In Vivo Evaluation of a Resveratrol Dimer, Viniferin, as an HCV Replication Inhibitor.
Oligostilbenoid compounds, a group of resveratrol multimers, display several anti-microbial activities through the neutralization of cytotoxic oxidants, and by inhibiting essential host and viral enzymes. In our previous study, we identified a series of oligostilbenoid compounds as potent hepatitis C virus (HCV) replication inhibitors. In particular, vitisin B, a resveratrol tetramer, exhibited the most dramatic anti-HCV activity (EC Topics: Animals; Antiviral Agents; Benzofurans; Cell Line, Tumor; Cell Survival; Genotype; Hepacivirus; Humans; Mice; Molecular Structure; Replicon; Resveratrol; Stilbenes; Viral Nonstructural Proteins; Virus Replication; Vitis | 2019 |
Trans ε viniferin decreases amyloid deposits and inflammation in a mouse transgenic Alzheimer model.
As Alzheimer's disease (AD) induces several cellular and molecular damages, it could be interesting to use multi-target molecules for therapeutics. We previously published that trans ε-viniferin induced the disaggregation of Aβ42 peptide and inhibited the inflammatory response in primary cellular model of AD. Here, effects of this stilbenoid were evaluated in transgenic APPswePS1dE9 mice. We report that trans ε-viniferin could go through the blood brain barrier, reduces size and density of amyloid deposits and decreases reactivity of astrocytes and microglia, after a weekly intraperitoneal injection at 10 mg/kg from 3 to 6 months of age. Topics: Alzheimer Disease; Animals; Astrocytes; Benzofurans; Disease Models, Animal; Female; Inflammation; Male; Mice; Mice, Transgenic; Microglia; Plaque, Amyloid; Stilbenes | 2019 |
Metabolomic and transcriptomic changes underlying cold and anaerobic stresses after storage of table grapes.
The currently accepted paradigm is that fruits and vegetables should be consumed fresh and that their quality deteriorates during storage; however, there are indications that some metabolic properties can, in fact, be improved. We examined the effects of low temperature and high-CO Topics: Acetates; Anaerobiosis; Benzofurans; Carbon Dioxide; Cold Temperature; Food Storage; Metabolomics; Pyruvic Acid; Signal Transduction; Stilbenes; Transcription Factors; Transcriptome; Up-Regulation; Vitis | 2019 |
Encapsulation of ε-viniferin in onion-type multi-lamellar liposomes increases its solubility and its photo-stability and decreases its cytotoxicity on Caco-2 intestinal cells.
ε-Viniferin, a resveratrol dimer, is a naturally occurring stilbene that has been studied so far for its potential beneficial effects on human health. Its low water solubility, its photo-sensitivity and its low bioavailability make its applications in the food industry complicated. To overcome these limitations, ε-viniferin was encapsulated in phospholipid-based multi-lamellar liposomes (MLLs) called spherulites or onions. In the best case, an encapsulation efficiency of 58 ± 3% and a bioactive loading of 4.2 ± 0.5% were reached. Encapsulation of ε-viniferin drastically increased its water solubility by more than 5 orders to reach 17.4 g L-1 and provided protection against its UV-induced isomerization. While ε-viniferin was shown to be significantly toxic to Caco-2 intestinal-like cells for concentrations higher than 25 μM, once encapsulated in MLLs, those cells did not experience any mortality even for the highest tested stilbene concentration (100 μM) as revealed by red neutral assay. Topics: Benzofurans; Caco-2 Cells; Cell Survival; Drug Carriers; Drug Compounding; Humans; Intestines; Liposomes; Phospholipids; Solubility; Stilbenes; Ultraviolet Rays | 2019 |
Resveratrol dimer trans-ε-viniferin prevents rotaviral diarrhea in mice by inhibition of the intestinal calcium-activated chloride channel.
We previously identified, by a natural-product screen, resveratrol oligomers as inhibitors of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. Here, we report the resveratrol dimer trans-ε-viniferin (TV) and tetramer r-2-viniferin (RV) as inhibitors of the intestinal calcium-activated chloride channel (CaCC) and demonstrate their antisecretory efficacy in a neonatal mouse model of rotaviral diarrhea. Short-circuit measurements show inhibition of CaCC current in the human colonic cell line HT-29 by TV and RV with IC Topics: Animals; Benzofurans; Chloride Channels; Diarrhea; HT29 Cells; Humans; Intestines; Male; Mice, Inbred C57BL; Resveratrol; Rotavirus; Rotavirus Infections; Stilbenes | 2018 |
Trans ε-viniferin is an amyloid-β disaggregating and anti-inflammatory drug in a mouse primary cellular model of Alzheimer's disease.
Alzheimer's disease (AD) is marked by several cellular and molecular damage. Therefore, the therapeutic interest of multi-target molecules is increasingly justified. Polyphenols presenting multiple pharmacological effects would be more efficient. In this study, beneficial effects of trans ε-viniferin, a natural polyphenol were thus evaluated. This study reported that this stilbenoid (1) induced the disaggregation of amyloid β (Aβ) peptide and (2) rescued inflammation in murine primary neuronal cultures. These both effects are higher than those of resveratrol, and so, trans ε-viniferin could be a good therapeutic multi-target candidate. Topics: Alzheimer Disease; Amyloid beta-Peptides; Animals; Anti-Inflammatory Agents; Benzofurans; Cells, Cultured; Disease Models, Animal; Mice; Neurons; Stilbenes | 2018 |
Molecular analysis of differential antiproliferative activity of resveratrol, epsilon viniferin and labruscol on melanoma cells and normal dermal cells.
Very recently, we have produced new resveratrol derived compounds, especially labruscol by culture of elicited grapevine cell suspensions (Vitis labrusca L.). This new polyphenolic oligomer could function as cancer chemopreventive agent in similar manner of resveratrol. In this study, we have determined the efficiency of resveratrol, ε-viniferin and the labruscol on human melanoma cell with or without metastatic phenotype. Our results show a differential activity of the three compounds where the resveratrol remains the polyphenolic compound with the most effective action compared to other oligomers. These three compounds block cell cycle of melanoma cells in S phase by modulating key regulators of cell cycle i.e. cyclins A, E, D1 and their cyclin-dependent kinases 1 and 2. These effects are associated with an increase of cell death while these compounds have no cytotoxic action on normal human dermal fibroblasts. Topics: Anticarcinogenic Agents; Benzofurans; CDC2 Protein Kinase; Cell Line, Tumor; Cell Proliferation; Cyclin A; Cyclin D1; Cyclin E; Cyclin-Dependent Kinase 2; Fibroblasts; Humans; Melanoma; Resveratrol; S Phase; Skin; Stilbenes; Vitis | 2018 |
Tissular Distribution and Metabolism of
Recent studies showed that. After IP injection of 50 mg/kg, ε-viniferin and its metabolites were identified and quantified in plasma, liver, kidneys, adipose tissues, urine, and faeces by Liquid Chromatography-High Resolution Mass Spectrometry (LC-HRMS).. ε-Viniferin underwent a rapid hepatic metabolism mostly to glucuronides but also to a lesser extent to sulphate derivatives. The highest glucuronide concentrations were found in liver followed by plasma and kidneys whereas only traces amounts were found in adipose tissues. In contrast the highest ε-viniferin areas under concentration (AUC) and mean residence times (MRT) values were found in white adipose tissues. Finally, much lower levels of ε-viniferin or its metabolites were found in urine than in faeces, suggesting that biliary excretion is the main elimination pathway.. A rapid and large metabolism of ε-viniferin and a high bioaccumulation in white adipose tissues were observed. Thus, these tissues could be a reservoir of the native form of ε-viniferin that could allow its slow release and a sustained presence within the organism. Topics: Adiposity; Animals; Benzofurans; Chromatography, Liquid; Dose-Response Relationship, Drug; Feces; Glucuronides; Injections, Intraperitoneal; Kidney; Liver; Male; Rats; Rats, Wistar; Stilbenes | 2018 |
Biomimetic Synthesis of Resveratrol Trimers Catalyzed by Horseradish Peroxidase.
Biotransformation of Topics: Benzofurans; Biocatalysis; Biomimetics; Horseradish Peroxidase; Hydrogen Peroxide; Magnetic Resonance Spectroscopy; Molecular Structure; Oxidation-Reduction; Resveratrol; Stilbenes | 2017 |
Mechanism of isomers and analogues of resveratrol dimers selectively quenching singlet oxygen by UHPLC-ESI-MS
Stilbenoids, in particular, resveratrol and its dimers are abundantly present in Vitis vinifera and proved to be quenchers with selective singlet oxygen. However, only a few mechanisms are reported for their complex molecular architectures. Hence, UHPLC combined with accurate MS is employed to investigate the photo-radiation mechanism of resveratrol dimers systematically. Ⅰ: Resorcinol ring exists in Scirpusin A 1, Trans-ε-viniferin 2 and Trans-σ-viniferin 3. The photochemical products were 14Da or 16Da higher than reagents and underwent an endoperoxide intermediate to quinones; Ⅱ: [2+2] cyclization of intra-molecular trans-double bond. The products were 18Da greater than substrates thereby cycloaddited to oxygen heterocyclic; Ⅲ : [4+1], [4+2] cyclization of oxetane formed products were 28Da and 44Da higher than 3, 2 and 1. Ⅳ : 5-phenol-2,3-dihydrobenzofuran ring exists in 2 been oxidized, causing the products at 16Da, 32Da higher than 2. This is the first to reveal the generally regular mechanism of stilbenoids quenching singlet oxygen. Topics: Benzofurans; Isomerism; Resveratrol; Singlet Oxygen; Stilbenes | 2017 |
Cyperaceae Species Are Potential Sources of Natural Mammalian Arginase Inhibitors with Positive Effects on Vascular Function.
The inhibition of arginase is of substantial interest for the treatment of various diseases of public health interest including cardiovascular diseases. Using an ex vivo experiment on rat aortic rings and an in vitro assay with liver bovine purified arginase, it was demonstrated that several polyphenolic extracts from Cyperus and Carex species possess vasorelaxant properties and mammalian arginase inhibitory capacities. Phytochemical studies performed on these species led to the identification of eight compounds, including monomers, dimers, trimers, and tetramers of resveratrol. The potential of these stilbenes as inhibitors of mammalian arginase was assessed. Five compounds, scirpusin B (5), ε-viniferin (4), cyperusphenol B (6), carexinol A (7), and the new compound virgatanol (1), showed significant inhibition of arginase, with percentage inhibition ranging from 70% to 95% at 100 μg/mL and IC Topics: Animals; Arginase; Benzofurans; Cattle; Cyperaceae; Enzyme Inhibitors; Molecular Structure; Rats; Resveratrol; Stilbenes | 2017 |
A simple and sensitive liquid chromatography-tandem mass spectrometry method for trans-ε-viniferin quantification in mouse plasma and its application to a pharmacokinetic study in mice.
Topics: Animals; Benzofurans; Chromatography, Liquid; Male; Mice; Mice, Inbred ICR; Stilbenes; Tandem Mass Spectrometry | 2017 |
Vincristine and ɛ-viniferine-loaded PLGA-b-PEG nanoparticles: pharmaceutical characteristics, cellular uptake and cytotoxicity.
The objective of this study was to prepare the ɛ-viniferine and vincristine-loaded PLGA-b-PEG nanoparticle and to investigate advantages of these formulations on the cytotoxicity of HepG2 cells. Prepared nanoparticle has shown a homogeneous distribution with 113 ± 0.43 nm particle size and 0.323 ± 0.01 polydispersity index. Zeta potential was determined as -35.03 ± 1.0 mV. The drug-loading percentages were 6.01 ± 0.23 and 2.01 ± 0.07 for ɛ-viniferine and vincristine, respectively. The cellular uptake efficiency of coumarin-6-loaded nanoparticles was increased up to 87.8% after 4 h. Nanoparticles loaded with high concentrations of both drugs showed a cytotoxic effect on HepG2 cells, having the percentage of cell viability of between 43.23% and 47.37%. Unfortunately, the percentage of apoptotic cells after treated with drugs-loaded nanaoparticles (10.93%) was similar to free forms of drugs (12.1%) that might be due to low ɛ-viniferine release in biological pH at 24 h. Topics: Antineoplastic Agents, Phytogenic; Apoptosis; Benzofurans; Drug Carriers; Hep G2 Cells; Humans; Liver; Liver Neoplasms; Nanoparticles; Polyethylene Glycols; Polyglactin 910; Stilbenes; Vincristine | 2017 |
Hot-Water Extracts from Roots of Vitis thunbergii var. taiwaniana and Identified ε-Viniferin Improve Obesity in High-Fat Diet-Induced Mice.
In this study, hot-water extracts (HW) from roots of Vitis thunbergii var. taiwaniana (VTT-R) were shown to lower levels of lipid accumulation significantly (P < 0.01 or 0.001) compared to the control in 3T3-L1 adipocytes. The VTT-R-HW (40 mg/kg) interventions concurrent with a high-fat (HF) diet in C57BL/6 mice over a 5 eek period were shown to reduce body weights significantly (P < 0.05) compared to those of mice fed a HF diet under the same food-intake regimen. The (+)-ε-viniferin isolated from VTT-R-HW was shown to reduce the size of lipid deposits significantly compared to the control (P < 0.05 or 0.001) in 3T3-L1 adipocytes, and dose-dependent 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase inhibitions showed that the 50% inhibitory concentration was calculated to be 96 μM. The two-stage (+)-ε-viniferin interventions (10 mg/kg, day 1 to day 38; 25 mg/kg, day 39 to day 58) were shown to lower mice body weights significantly (P < 0.05 or 0.001), the weight ratio of mesenteric fat, blood glucose, total cholesterol, and low-density lipoprotein compared to that of the HF group under the same food-intake regimen but without concurrent VTT-R-HW interventions. It might be possible to use VTT-R-HW or (+)-ε-viniferin as an ingredient in the development of functional foods for weight management, and this will need to be investigated further. Topics: Animals; Benzofurans; Blood Glucose; Cholesterol; Diet, High-Fat; Humans; Male; Mice; Mice, Inbred C57BL; Molecular Structure; Obesity; Plant Extracts; Plant Roots; Stilbenes; Vitis | 2017 |
Identification of a resveratrol tetramer as a potent inhibitor of hepatitis C virus helicase.
Hepatitis C virus (HCV) infection is responsible for various chronic inflammatory liver diseases. Here, we have identified a naturally occurring compound with anti-HCV activity and have elucidated its mode of antiviral action.. Luciferase reporter and real-time RT-PCR assays were used to measure HCV replication. Western blot, fluorescence-labelled HCV replicons and infectious clones were employed to quantitate expression levels of viral proteins. Resistant HCV mutant mapping, in vitro NS3 protease, helicase, NS5B polymerase and drug affinity responsive target stability assays were also used to study the antiviral mechanism.. A resveratrol tetramer, vitisin B from grapevine root extract showed high potency against HCV replication (EC50 = 6 nM) with relatively low cytotoxicity (EC50 >10 μM). Combined treatment of vitisin B with an NS5B polymerase inhibitor (sofosbuvir) exhibited a synergistic or at least additive antiviral activity. Analysis of a number of vitisin B-resistant HCV variants suggested an NS3 helicase as its potential target. We confirmed a direct binding between vitisin B and a purified NS3 helicase in vitro. Vitisin B was a potent inhibitor of a HCV NS3 helicase (IC50 = 3 nM). In vivo, Finally, we observed a preferred tissue distribution of vitisin B in the liver after i.p. injection in rats, at clinically attainable concentrations. Conclusion and Implications Vitisin B is one of the most potent HCV helicase inhibitors identified so far. Vitisin B is thus a prime candidate to be developed as the first HCV drug derived from natural products. Topics: Animals; Benzofurans; Biological Products; Cell Line; Cell Survival; Dose-Response Relationship, Drug; Drug Synergism; Flavonoids; Hepacivirus; Humans; Phenols; Protein Binding; Rats; Resveratrol; RNA Helicases; Sofosbuvir; Stilbenes; Tissue Distribution; Viral Nonstructural Proteins; Virus Replication | 2016 |
Effects of ε-viniferin, a dehydrodimer of resveratrol, on transepithelial active ion transport and ion permeability in the rat small and large intestinal mucosa.
ε-Viniferin is a dehydrodimer of resveratrol, a polyphenol synthesized in many plants, including grapevine. The present study investigated the effects of ε-viniferin and resveratrol on epithelial secretory and barrier functions in isolated rat small and large intestinal mucosa. Mucosa-submucosa tissue preparations of various segments of the rat large and small intestines were mounted on Ussing chambers, and short-circuit current (Isc) and tissue conductance (Gt) were continuously measured. The mucosal addition of ε-viniferin (>10(-5) mol/L) and resveratrol (>10(-4) mol/L) to the cecal mucosa, which was the most sensitive region, induced an increase in Isc and a rapid phase decrease (P-1) followed by rapid (P-2) and broad (P-3) peak increases in Gt in concentration-dependent manners. Mucosal ε-viniferin (10(-4) mol/L), but not resveratrol (10(-4) mol/L), increased the permeability of FITC-conjugated dextran (4 kDa). The mucosal ε-viniferin-evoked changes in Isc (Cl(-) secretion), but not in Gt, were attenuated by a selective cyclooxygenase (COX)-1 inhibitor and a selective EP4 prostaglandin receptor. The mucosal ε-viniferin-evoked increase in Isc was partially attenuated, and P-2, but not P-1 or P-3, change in Gt was abolished by a transient receptor potential cation channel, subfamily A, member 1 (TRPA1) inhibitor. Moreover, the mucosal ε-viniferin concentration-dependently attenuated the mucosal propionate (1 mmol/L)-evoked increases in Isc and Gt Immunohistochemical studies revealed COX-1-immunoreactive epithelial cells in the cecal crypt. The present study showed that mucosal ε-viniferin modulated transepithelial ion transport and permeability, possibly by activating sensory epithelial cells expressing COX-1 and TRPA1. Moreover, mucosal ε-viniferin decreased mucosal sensitivity to other luminal molecules such as short-chain fatty acids. In conclusion, these results suggest that ε-viniferin modifies intestinal mucosal transport and barrier functions. Topics: Animals; Benzofurans; Biological Transport; Dose-Response Relationship, Drug; Intestinal Mucosa; Intestine, Large; Intestine, Small; Ion Transport; Male; Permeability; Rats; Rats, Sprague-Dawley; Resveratrol; Stilbenes | 2016 |
Resveratrol and related oligostilbenes are defense molecules produced by grapevine in response to stresses including various elicitors or signal molecules. Together with their prominent role in planta, these compounds have been the center of much attention in recent decades due to their pharmacological properties. The cost-effective production of resveratrol derivatives such as viniferins or more structurally complex stilbene oligomers remains a challenging task. In this study, the chemical diversity of stilbenes produced by Vitis vinifera Pinot Noir hairy roots was investigated after elicitation for 4 days with a mixture of methyl jasmonate (100 μM) and cyclodextrins (50 mM). Two crude extracts obtained from the culture medium and from the hairy roots were fractionated by centrifugal partition chromatography. The fractions were chemically investigated by two complementary identification approaches involving a Topics: Benzofurans; Chromatography, Liquid; Cyclopentanes; Flavanones; Flavonoids; Molecular Structure; Nuclear Magnetic Resonance, Biomolecular; Oxylipins; Phenols; Plant Roots; Polycyclic Compounds; Resveratrol; Stilbenes; Vitis | 2016 |
Enhanced Stilbene Production and Excretion in Vitis vinifera cv Pinot Noir Hairy Root Cultures.
Topics: Acetates; Benzofurans; beta-Cyclodextrins; Cyclopentanes; Glucosides; Oxylipins; Plant Roots; Resorcinols; Resveratrol; Stilbenes; Vitis | 2016 |
Response of direct or priming defense against Botrytis cinerea to methyl jasmonate treatment at different concentrations in grape berries.
This study was conducted to characterize the forms of disease resistance induced by methyl jasmonate (MeJA) in harvested grape berries and to evaluate the impact of the induced resistance on fruit quality. The results showed that MeJA treatment at concentrations from 10 to 100μmol/L could effectively induce disease resistance against Botrytis cinerea and reduce disease incidence in grape berries. The induced disease resistance was tightly associated with increased H2O2 generation, enhanced expression of the defense-related gene VvNPR1.1 and accumulation of stilbene phytoalexins such as tran-resveratrol and its oligomer (trans-)ε-viniferin. The expression of the defense-related gene and synthesis of phytoalexins in 10μmol/L MeJA-treated grape berries were only significantly enhanced upon inoculating the berries with B. cinerea, whereas the 50 or 100μmol/L of MeJA treatment directly induced these defense responses. Hence, we deduce that the low concentration of MeJA (10μmol/L) triggered a priming defense mechanism, while higher concentrations of MeJA (50 or 100μmol/L) directly activated defense responses, thus enhancing disease resistance in grape berries. Moreover, the primed grape berries maintained higher contents of soluble sugars and higher DPPH radical scavenging activity and reducing power compared with those expressing direct defense responses. These results indicate that priming of defense is a cost-effective strategy to protect harvested grape berries from B. cinerea infection in terms of minimizing quality loss. Topics: Acetates; Benzofurans; Botrytis; Cyclopentanes; Disease Resistance; Fruit; Gene Expression Regulation; Hydrogen Peroxide; Oxylipins; Plant Growth Regulators; Resveratrol; Stilbenes; Vitis | 2015 |
Synthesis of ε-Viniferin Glycosides by Glucosyltransferase from Phytolacca americana and their Inhibitory Activity on Histamine Release from Rat Peritoneal Mast Cells.
Glycosylation of (+)-ε-viniferin was investigated using glucosyltransferase from Phytolacca americana (PaGT3) as a biocatalyst. (+)-ε-Viniferin was converted by PaGT3 into its 4b- and 13b-β-D-glucosides, the inhibitory activities on histamine release from rat peritoneal mast cells of which were higher than that of (+)-ε-viniferin. Topics: Animals; Benzofurans; Biocatalysis; Cells, Cultured; Glucosyltransferases; Glycosides; Histamine; Histamine Release; Male; Mast Cells; Phytolacca americana; Plant Proteins; Rats; Rats, Wistar; Stilbenes | 2015 |
ε-Viniferin, a resveratrol dimer, prevents diet-induced obesity in mice.
Red wines are thought to be one of the major dietary sources of trans-resveratrol. The beneficial effects of t-resveratrol against metabolic disorders have been well characterized, however, red wines also contain various resveratrol derivatives whose health benefits have not been completely elucidated. In this report, we investigated ε-viniferin, a resveratrol dimer, which is present at comparable concentrations to t-resveratrol in red wines, and has higher anti-adipogenesis activity in 3T3-L1 cells. In addition, ε-viniferin was more effective than t-resveratrol in its anti-obesity and anti-inflammatory effects in high-fat diet fed mice. These results suggested ε-viniferin may be one of the active ingredients against metabolic disorders in red wines, in addition to t-resveratrol. Topics: 3T3 Cells; Adipogenesis; Animals; Anti-Obesity Agents; Benzofurans; Diet, High-Fat; Dimerization; Dose-Response Relationship, Drug; Male; Mice; Mice, Inbred C57BL; Obesity; Resveratrol; Stilbenes; Treatment Outcome | 2015 |
The Differential Effects of Resveratrol and trans-ε-Viniferin on the GABA-Induced Current in GABAA Receptor Subtypes Expressed in Xenopus Laevis Oocytes.
The natural products resveratrol and trans-ε-viniferin have been reported to have many beneficial effects, which include the enhancement of cognition and memory. There have been no studies which have reported the effects of these compounds on the different GABAA receptor subtypes and this study aimed to address this.. The effects of both resveratrol, and its dimer, trans-ε-viniferin, have been investigated on different GABAA receptor subtypes expressed in Xenopus laevis oocytes, using the two-electrode voltage clamp technique.. Resveratrol induced a current of 22 ± 3.53 nA in the α1β2γ2L subtype of the GABAA receptor (but not in the α5β3γ2L and α2β2γ2L subtypes) when applied alone. It also positively modulated the GABA-induced current (IGABA) in α1β2γ2L receptors, in adose-dependent manner (EC50 58.24 μM). The effects of resveratrol were not sensitive to the benzodiazepine antagonist flumazenil. trans-ε-Viniferin exhibited a different pattern of activity to resveratrol; it alone had no effect on any of the subtypes, but it did negatively modulate the GABA-induced current (IGABA) in all three subtypes. The greatest inhibition was found in the α1β2γ2L subtype (IC50 5.79 μM), with the inhibition in the α2β2γ2L (IC50 of 19.08 μM) and α5β3γ2L (IC50 of 21.05 μM) subtypes being similar. The effects of trans-ε-viniferin in α1β2γ2L and α2β2γ2L receptors werealso not sensitive to the benzodiazepine antagonist flumazenil while, in the α5β3γ2L subtype the effect was not sensitive to the inverse agonist L-655,708, indicating different binding sites for this molecule.. The results of the present study indicate that both resveratrol and trans-ε-viniferin modulate the GABA-induced current in different ways, and that trans-ε-viniferin may be a lead compound for the discovery of agents which selectively inhibit the GABA-induced current in α1-containing subtypes.This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page. Topics: Animals; Benzofurans; Binding Sites; Dose-Response Relationship, Drug; Flumazenil; GABA Modulators; gamma-Aminobutyric Acid; Humans; Imidazoles; Inhibitory Concentration 50; Oocytes; Patch-Clamp Techniques; Receptors, GABA-A; Resveratrol; Stilbenes; Xenopus laevis | 2015 |
Towards novel anti-tumor strategies for hepatic cancer: ɛ-viniferin in combination with vincristine displays pharmacodynamic synergy at lower doses in HepG2 cells.
Hepatocellular carcinoma is the fifth most common cancer and the third leading cause of cancer-related deaths worldwide. The efficacy of novel combination treatments are increasingly evaluated with use of integrative biology research and development (R&D) strategies and methodological triangulation. We investigated the anti-tumor effect of ɛ-viniferin alone, and the putative synergy of ɛ-viniferin with vincristine on the growth of HepG2 cells in vitro. Growth inhibition and apoptosis induction were determined by MTT assay and annexin V/propidium iodide (PI), respectively. Morphological changes and DNA fragmentation were investigated under electron microscopy and by agarose gel electrophoresis, respectively. The results collectively showed that treating cells with ɛ-viniferin and vincristine significantly inhibited cell viability at lower doses as compared to each agent applied alone. IC(50) values for ɛ-viniferin and vincristine were determined as 98.3 and 52.5 μM at 24 h, respectively. IC(50) value of ɛ-viniferin in combination with vincristine was 15.8+11.25 μM (mean/SD) at 24 h. The viability of cells treated with 17.9 μM vincristine alone for 24 h was 79.62%; it reduced to 26.53% when 25 μM ɛ-viniferin was added in combination with vincristine (p<0.05). We found that combination of drugs promoted the sensitivity of cells against to vincristine treatment. The effect of combined use was in support of a synergistic pharmacodynamic effect. Moreover, low doses of the combination regimen induced phosphatidyl re-localization, morphological changes, and DNA fragmentation, and therefore caused apoptotic death. This study thus suggests that low concentrations of ɛ-viniferin and vincristine can enhance the anti-tumor effects efficiently by inducing HepG2 cell apoptosis. Further studies in other model systems are warranted with a view to potential future applications in the clinic of such combination regimens and their putative mechanism of action in the observed synergy reported here. Topics: Antineoplastic Agents, Phytogenic; Apoptosis; Benzofurans; Carcinoma, Hepatocellular; Cell Shape; Cell Survival; DNA Fragmentation; Dose-Response Relationship, Drug; Drug Screening Assays, Antitumor; Drug Synergism; Hep G2 Cells; Humans; Inhibitory Concentration 50; Liver Neoplasms; Stilbenes; Vincristine | 2014 |
Resveratrol oligomers inhibit biofilm formation of Escherichia coli O157:H7 and Pseudomonas aeruginosa.
Biofilm formation is closely related to bacterial infection and is also a mechanism of antimicrobial resistance. Hence, the antibiofilm approach provides an alternative to an antibiotic strategy. In this study, the antibiofilm activities of resveratrol (1) and five of its oligomers, namely, ε-viniferin (2), suffruticosol A (3), suffruticosol B (4), vitisin A (5), and vitisin B (6), were investigated against enterohemorrhagic Escherichia coli O157:H7 and Pseudomonas aeruginosa PA14. Vitisin B (6), a stilbenoid tetramer, was found to inhibit biofilm formation by the two bacteria the most effectively and at 5 μg/mL inhibited E. coli O157:H7 biofilm formation by more than 90%. Topics: Anti-Bacterial Agents; Benzofurans; Biofilms; Escherichia coli O157; Molecular Structure; Phenols; Pseudomonas aeruginosa; Resveratrol; Stilbenes | 2014 |
Two new oligostilbenes from the stem of Parthenocissus quinquefolia.
Two new oligostilbenes, parthenocissins M (1) and N (2), together with two known compounds, miyabenol C (3) and ϵ-viniferin (4), were isolated from the stem of Parthenocissus quinquefolia. Their structures were elucidated by means of NMR, UV, IR, and MS data. Topics: Benzofurans; Drugs, Chinese Herbal; Molecular Structure; Nuclear Magnetic Resonance, Biomolecular; Plant Stems; Stilbenes; Vitaceae | 2014 |
Bacteriostatic antimicrobial combination: antagonistic interaction between epsilon-viniferin and vancomycin against methicillin-resistant Staphylococcus aureus.
Stilbenoids have been considered as an alternative phytotherapeutic treatment against methicillin-resistant Staphylococcus aureus (MRSA) infection. The combined effect of ε-viniferin and johorenol A with the standard antibiotics, vancomycin and linezolid, was assessed against MRSA ATCC 33591 and HUKM clinical isolate. The minimum inhibitory concentration (MIC) value of the individual tested compounds and the fractional inhibitory concentration index (FICI) value of the combined agents were, respectively, determined using microbroth dilution test and microdilution checkerboard (MDC) method. Only synergistic outcome from checkerboard test will be substantiated for its rate of bacterial killing using time-kill assay. The MIC value of ε -viniferin against ATCC 33591 and johorenol A against both strains was 0.05 mg/mL whereas HUKM strain was susceptible to 0.1 mg/mL of ε-viniferin. MDC study showed that only combination between ε-viniferin and vancomycin was synergistic against ATCC 33591 (FICI 0.25) and HUKM (FICI 0.19). All the other combinations (ε-viniferin-linezolid, johorenol A-vancomycin, and johorenol A-linezolid) were either indifferent or additive against both strains. However, despite the FICI value showing synergistic effect for ε-viniferin-vancomycin, TKA analysis displayed antagonistic interaction with bacteriostatic action against both strains. As conclusion, ε-viniferin can be considered as a bacteriostatic stilbenoid as it antagonized the bactericidal activity of vancomycin. These findings therefore disputed previous report that ε-viniferin acted in synergism with vancomycin but revealed that it targets similar site in close proximity to vancomycin's action, possibly at the bacterial membrane protein. Hence, this combination has a huge potential to be further studied and developed as an alternative treatment in combating MRSA in future. Topics: Anti-Infective Agents; Apoptosis; Benzofurans; Cell Survival; Drug Antagonism; Drug Interactions; Drug Therapy, Combination; Methicillin-Resistant Staphylococcus aureus; Stilbenes; Vancomycin | 2014 |
Antifungal activity of resveratrol derivatives against Candida species.
trans-Resveratrol (1a) is a phytoalexin produced by plants in response to infections by pathogens. Its potential activity against clinically relevant opportunistic fungal pathogens has previously been poorly investigated. Evaluated herein are the candidacidal activities of oligomers (2a, 3-5) of 1a purified from Vitis vinifera grape canes and several analogues (1b-1j) of 1a obtained through semisynthesis using methylation and acetylation. Moreover, trans-ε-viniferin (2a), a dimer of 1a, was also subjected to methylation (2b) and acetylation (2c) under nonselective conditions. Neither the natural oligomers of 1a (2a, 3-5) nor the derivatives of 2a were active against Candida albicans SC5314. However, the dimethoxy resveratrol derivatives 1d and 1e exhibited antifungal activity against C. albicans with minimum inhibitory concentration (MIC) values of 29-37 μg/mL and against 11 other Candida species. Compound 1e inhibited the yeast-to-hyphae morphogenetic transition of C. albicans at 14 μg/mL. Topics: Antifungal Agents; Benzofurans; Candida; Candida albicans; Microbial Sensitivity Tests; Molecular Structure; Resveratrol; Stereoisomerism; Stilbenes; Vitis | 2014 |
A new symmetrical tetramer oligostilbenoid containing tetrahydrofuran ring from the stem bark of Dryobalanops lanceolata.
A new tetramer oligostilbenoid possessing tetrahydrofuran ring, malaysianol C (1), was isolated from the acetone extract of the stem bark of Dryobalanops lanceolata, together with four known oligostilbenoids nepalensinol E (2), ϵ-viniferin (3), laevifonol (4), and ampelopsin F (5). The structures of isolated compounds were elucidated on the basis of spectral evidence. The antibacterial activity of the isolated compounds was evaluated using resazurin microtitre-plate assay, whereas the cytotoxic activity was tested using MTT assay. The plausible biogenetic routes of the isolated compounds are also discussed. Topics: Anti-Bacterial Agents; Antineoplastic Agents, Phytogenic; Benzofurans; Dipterocarpaceae; Flavonoids; Furans; Humans; Malaysia; Molecular Structure; Plant Bark; Plant Extracts; Plant Stems; Stereoisomerism; Stilbenes | 2014 |
Direct identification and characterization of phenolic compounds from crude extracts of buds and internodes of grapevine (Vitis vinifera cv Merlot).
The crude methanol extracts of latent buds and internodes Vitis vinifera L. cv. Merlot were used for the determination of phenolic compounds by a combination of reverse phase HPLC with diode array detection (HPLC-DAD) and mass spectrometry (LC-MS). This method allowed the identification of 9 phenolic compounds without purification or fractionation. These 9 compounds were divided into three groups: procyanidins, flavonols and stilbenes. Detection by HPLC-DAD at different wave lengths of 280 nm to 320 nm, allowed the estimation of concentrations of those compounds. This method permitted, for the first time, both characterization and quantification of polyphenolic compounds in buds of grapevine. Comparison with the results obtained in internodes showed that quercetin, resveratrol tetramer and ε-viniferin had similar levels in buds and internodes while six other compounds identified had higher levels in buds. Topics: Benzofurans; Chromatography, High Pressure Liquid; Flavonols; Mass Spectrometry; Phenols; Plant Extracts; Proanthocyanidins; Quercetin; Resveratrol; Stilbenes; Vitis | 2014 |
trans-Resveratrol and ε-viniferin decrease glucose absorption in porcine jejunum and ileum in vitro.
trans-Resveratrol and ε-viniferin are used as dietary supplements. They are reported to be supportive in preventing arteriosclerosis and diabetes and a previous study could demonstrate an inhibitory potential on sodium-dependent glucose transport (SGLT1) in oocytes und mouse intestinal everted rings (Schulze et al., 2012, Genes Nutr. 6, S61). The in vitro effects of trans-resveratrol and ε-viniferin on intestinal glucose uptake in the porcine small intestines (Sus Scrofa) have not yet been evaluated. It was hypothesized that trans-resveratrol/ε-viniferin may have an adverse effect on porcine intestinal sodium-dependent glucose uptake. The effects on electrogenic small intestinal glucose absorption and sodium-dependent (3)H-glucose uptake in brush border membrane vesicles (BBMV) were evaluated. Pieces of mucosa were mounted into Ussing chambers and were incubated with either trans-resveratrol (0.3 mmol/L), ε-viniferin (0.3 mmol/L), or ethanol. Sodium-dependent glucose absorption into BBMV was measured. (3)H-glucose uptake studies were performed using the same concentrations of the respective substances. SGLT1-mediated glucose absorption was approximately 3-fold higher in ileum compared to jejunum. After preincubation with trans-resveratrol and ε-viniferin, glucose-induced increases of short-circuit currents were significantly decreased. BBMV-studies revealed comparable results and glucose uptake was also significantly decreased. As the glucose transport/uptake was decreased after preincubation with either trans-resveratrol or ε-viniferin this active transport mechanism was directly influenced by inhibiting the SGLT1 transport system. Topics: Animals; Benzofurans; Biological Transport, Active; Glucose; Ileum; Intestinal Absorption; Intestinal Mucosa; Jejunum; Male; Resveratrol; Sodium-Glucose Transporter 1; Stilbenes; Swine | 2013 |
Effect of trans-ε-viniferin on in vitro porcine oocyte maturation and subsequent developmental competence in preimplantation embryos.
Trans-ε-viniferin is a naturally occurring polyphenol belonging to the stilbenoid family that has been isolated from Vitis amurensis, one of the most common wild grapes in Asia. We investigated the effects of trans-ε-viniferin on in vitro maturation (IVM) and developmental competence after in vitro fertilization (IVF) or parthenogenesis (PA). We observed that trans-ε-viniferin treatment during IVM did not improve nuclear maturation rates of oocytes in any group, but significantly increased (P<0.05) intracellular glutathione (GSH) levels and reduced reactive oxygen species (ROS) levels in the 0.5 μM treatment group. Trans-ε-viniferin treatment during IVM of recipient oocytes promoted higher (P<0.05) expression of DNA methyltransferase-1 (DNMT1) mRNA in the 0.5 μM treatment group as compared with the control group. However, the expression of essential transcriptional and apoptosis-related genes did not significantly differ from that of the control. In cumulus cells, pro-apoptosis gene expressions were changed as apoptosis decreased. Oocytes treated with trans-ε-viniferin during IVM did not have significantly different cleavage rates or blastocyst formation rates after PA, but total cell numbers were significantly higher (P<0.05) in the 0.5 and 5.0 μM treatment groups compared with those in the control group. IVF embryos showed similar results. In conclusion, these results indicate that trans-ε-viniferin treatment during porcine IVM increased the total cell number of blastocysts, possibly by increasing intracellular GSH synthesis, reducing ROS levels, increasing DNMT1 gene expression of oocytes and decreasing pro-apoptosis gene expressions of cumulus cells. Topics: Animals; Apoptosis; Benzofurans; Blastocyst; Embryonic Development; Female; Fertilization in Vitro; Glutathione; In Vitro Oocyte Maturation Techniques; Methyltransferases; Oocytes; Parthenogenesis; Random Allocation; Reactive Oxygen Species; Stilbenes; Swine | 2013 |
Inhibition of Pseudomonas aeruginosa and Escherichia coli O157:H7 biofilm formation by plant metabolite ε-viniferin.
Pathogenic biofilms are associated with persistent infection due to their high resistances to diverse antibiotics. Pseudomonas aeruginosa infects plants, animals, and humans and is a major cause of nosocomial diseases in patients with cystic fibrosis. In the present study, the antibiofilm abilities of 522 plant extracts against P. aeruginosa PA14 were examined. Three Carex plant extracts at a concentration of 200 μg/mL inhibited P. aeruginosa biofilm formation by >80% without affecting planktonic cell growth. In the most active extract of Carex pumila , resveratrol dimer ε-viniferin was one of the main antibiofilm compounds against P. aeruginosa. Interestingly, ε-viniferin at 10 μg/mL inhibited biofilm formation of enterohemorrhagic Escherichia coli O157:H7 by 98%. Although Carex extracts and trans-resveratrol are known to possess antimicrobial activity, this study is the first to report that C. pumila extract and ε-viniferin have antibiofilm activity against P. aeruginosa and E. coli O157:H7. Topics: Anti-Bacterial Agents; Benzofurans; Biofilms; Carex Plant; Dose-Response Relationship, Drug; Drug Evaluation, Preclinical; Escherichia coli O157; Plant Extracts; Plants, Medicinal; Pseudomonas aeruginosa; Resveratrol; Stilbenes | 2013 |
3D NMR structure of a complex between the amyloid beta peptide (1-40) and the polyphenol ε-viniferin glucoside: implications in Alzheimer's disease.
Alzheimer's disease (AD) is a progressive neurodegenerative disorder. There is a consensus that Aβ is a pathologic agent and that its toxic effects, which are at present incompletely understood, may occur through several potential mechanisms. Polyphenols are known to have wide-ranging properties with regard to health and for helping to prevent various diseases like neurodegenerative disorders. Thus inhibiting the formation of toxic Aβ assemblies is a reasonable hypothesis to prevent and perhaps treat AD METHODS: Solution NMR and molecular modeling were used to obtain more information about the interaction between the Aβ1-40 and the polyphenol ε-viniferin glucoside (EVG) and particularly the Aβ residues involved in the complex.. The study demonstrates the formation of a complex between two EVG molecules and Aβ1-40 in peptide characteristic regions that could be in agreement with the inhibition of aggregation. Indeed, in previous studies, we reported that EVG strongly inhibited in vitro the fibril formation of the full length peptides Aβ1-40 and Aβ1-42, and had a strong protective effect against PC12 cell death induced by these peptides.. For the full length peptide Aβ1-40, the binding sites observed could explain the EVG inhibitory effect on fibrillization and thus prevent amyloidogenic neurotoxicity.. Even though this interaction might be important at the biological level to explain the protective effect of polyphenols in neurodegenerative diseases, caution is required when extrapolating this in vitro model to human physiology. Topics: Alzheimer Disease; Amyloid beta-Peptides; Animals; Benzofurans; Binding Sites; Cell Line, Tumor; Glucosides; Magnetic Resonance Spectroscopy; Models, Molecular; PC12 Cells; Peptide Fragments; Polyphenols; Protein Conformation; Rats; Stilbenes | 2013 |
Comparative analyses of stilbenoids in canes of major Vitis vinifera L. cultivars.
Grapevine canes are rich in resveratrol and its complex derivatives. These compounds have many biological activities and are needed mainly for health purposes. Canes, which are often wasted, can be used to produce these high-value compounds at low cost. We studied sixteen Vitis vinifera L. cultivars among the most widely cultivated ones worldwide. Polyphenols were extracted from their canes and identified by liquid chromatography-nuclear magnetic resonance spectroscopy. We accurately determined the content of E-ε-viniferin, E-resveratrol, E-piceatannol, and vitisin B and, for the first time, that of hopeaphenol and miyabenol C. The canes did not contain these major stilbene compounds in similar proportions, and their abundance and order of abundance varied according to the cultivar. For instance, Pinot noir has very high levels of E-resveratrol and E-ε-viniferin; Gewurztraminer has very high levels of vitisin B, and Carignan and Riesling have very high levels of hopeaphenol. These findings suggest that the right cultivar should be used to obtain the highest yield of a polyphenol of interest. Topics: Benzofurans; Chromatography, Liquid; Phenols; Plant Stems; Polyphenols; Resveratrol; Species Specificity; Stilbenes; Vitis | 2013 |
Stilbenoid profiles of canes from Vitis and Muscadinia species.
We present stilbenoid profiles of canes from 16 grapevines. Fifteen stilbenoids were obtained through isolation and structure identification using MS, NMR, and [α](D) or as commercial standards. An HPLC-UV method for the simultaneous quantification of nine of these stilbenoids was developed and applied to canes of Vitis amurensis, Vitis arizonica, Vitis berlandieri, Vitis betulifolia, Vitis cinerea, Vitis × champini, Vitis × doaniana, Vitis labrusca, Vitis candicans (syn. Vitis mustangensis), Vitis riparia, Vitis rupestris, Vitis vinifera, Muscadinia rotundifolia, and a V. vinifera × M. rotundifolia hybrid. In these species, E-ampelopsin E, E-amurensin B, E-piceid, E-piceatannol, E-resveratrol, E-resveratroloside, E-ε-viniferin, E-ω-viniferin, and E-vitisin B were quantified, when found in sufficient amounts. Total concentrations ranged from ~2.2 to 19.5 g/kg of dry weight. Additional stilbenoids, E-3,5,4'-trihydroxystilbene 2-C-glucoside, Z-ampelopsin E, Z-trans-miyabenol C, E-trans-miyabenol C, scirpusin A, and Z-vitisin B, were identified but not quantified. Our results indicate that canes, particularly those of non-vinifera species, have substantial quantities of valuable, health-promoting stilbenoids. Topics: Benzofurans; Chromatography, High Pressure Liquid; Flavonoids; Glucosides; Magnetic Resonance Spectroscopy; Phenols; Resveratrol; Stilbenes; Vitis | 2013 |
trans-(-)-ε-Viniferin increases mitochondrial sirtuin 3 (SIRT3), activates AMP-activated protein kinase (AMPK), and protects cells in models of Huntington Disease.
Huntington disease (HD) is an inherited neurodegenerative disorder caused by an abnormal polyglutamine expansion in the protein Huntingtin (Htt). Currently, no cure is available for HD. The mechanisms by which mutant Htt causes neuronal dysfunction and degeneration remain to be fully elucidated. Nevertheless, mitochondrial dysfunction has been suggested as a key event mediating mutant Htt-induced neurotoxicity because neurons are energy-demanding and particularly susceptible to energy deficits and oxidative stress. SIRT3, a member of sirtuin family, is localized to mitochondria and has been implicated in energy metabolism. Notably, we found that cells expressing mutant Htt displayed reduced SIRT3 levels. trans-(-)-ε-Viniferin (viniferin), a natural product among our 22 collected naturally occurring and semisynthetic stilbenic compounds, significantly attenuated mutant Htt-induced depletion of SIRT3 and protected cells from mutant Htt. We demonstrate that viniferin decreases levels of reactive oxygen species and prevents loss of mitochondrial membrane potential in cells expressing mutant Htt. Expression of mutant Htt results in decreased deacetylase activity of SIRT3 and further leads to reduction in cellular NAD(+) levels and mitochondrial biogenesis in cells. Viniferin activates AMP-activated kinase and enhances mitochondrial biogenesis. Knockdown of SIRT3 significantly inhibited viniferin-mediated AMP-activated kinase activation and diminished the neuroprotective effects of viniferin, suggesting that SIRT3 mediates the neuroprotection of viniferin. In conclusion, we establish a novel role for mitochondrial SIRT3 in HD pathogenesis and discovered a natural product that has potent neuroprotection in HD models. Our results suggest that increasing mitochondrial SIRT3 might be considered as a new therapeutic approach to counteract HD, as well as other neurodegenerative diseases with similar mechanisms. Topics: AMP-Activated Protein Kinases; Animals; Benzofurans; Cell Line, Tumor; Energy Metabolism; Huntington Disease; Mice; Mitochondria; Rats; Sirtuin 3; Stilbenes | 2012 |
ε-Viniferin is more effective than its monomer resveratrol in improving the functions of vascular endothelial cells and the heart.
The present study compared the effects of resveratrol and its dimer ε-viniferin on vascular endothelial cells (VECs) functions, and on the blood pressure and cardiac mass of spontaneously hypertensive rats (SHRs). Treatment of VECs with these compounds enhanced cell proliferation via nitric oxide generation and protected the cells from oxidative stress by suppressing increases in intracellular oxygen species. ε-Viniferin was more potent than resveratrol in most of these effects. ε-Viniferin, but not resveratrol inhibited angiotensin-converting enzyme activity in vitro. Three weeks of ε-viniferin treatment (5 mg/kg) reduced the systolic blood pressure and improved the whole cardiac mass and left ventricle mass indexes in SHRs. In contrast, resveratrol administration (2.5 mg/kg) failed to lower the blood pressure and significantly improve these mass indexes. These data suggest that ε-viniferin as well as resveratrol may be involved in protecting the functions of VECs and the heart. Topics: Angiotensin-Converting Enzyme Inhibitors; Animals; Antioxidants; Benzofurans; Blood Pressure; Cell Proliferation; Cell Survival; Cells, Cultured; Dose-Response Relationship, Drug; Endothelial Cells; Male; Myocardium; Nitric Oxide; Organ Size; Oxidative Stress; Peptidyl-Dipeptidase A; Rats; Rats, Inbred SHR; Rats, Wistar; Reactive Oxygen Species; Resveratrol; Stilbenes; Swine | 2012 |
Ethanolic extracts and isolated compounds from small-leaf grape (Vitis thunbergii var. taiwaniana) with antihypertensive activities.
This study aimed to investigate the antihypertensive effects of ethanolic extracts (EE) and compounds isolated from the small-leaf grape (Vitis thunbergii var. taiwaniana, VTT). The highest antiangiotensin-converting enzyme (anti-ACE) was found in stem-EE (IC50 was 69.5 μg/mL). In spontaneously hypertensive rats (SHRs), stem-EE effectively reduced blood pressure 24 h after administration of a single oral dose or when administered daily for 4 weeks. The isolated compounds, including (+)-vitisin A, ampelopsin C, and (+)-ε-viniferin, were shown to have anti-ACE and vasodilating effects against phenylephrine-induced tensions in an endothelium-intact aortic ring, with (+)-vitisin A being the most effective compound. Compared to control rats, SHRs showed significantly reduced systolic and diastolic blood pressures 24 h after a single oral dose of (+)-vitisin A (10 mg/kg) or captopril (2 mg/kg). These results suggest that the development of functional foods with VTT extracts may be beneficial for regulating blood pressure. Topics: Administration, Oral; Angiotensins; Animals; Antihypertensive Agents; Benzofurans; Blood Pressure; Captopril; Chromatography, High Pressure Liquid; Dose-Response Relationship, Drug; Ethanol; Flavonoids; Male; Phenols; Plant Extracts; Plant Leaves; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Rats, Sprague-Dawley; Stilbenes; Vitis | 2012 |
Development of a rapid LC-UV method for the investigation of chemical and metabolic stability of resveratrol oligomers.
Resveratrol, piceatannol, ε-viniferin, r-viniferin, r2-viniferin, and hopeaphenol are naturally occurring polyphenols, associated with potentially beneficial health effects. We developed a rapid liquid chromatography-ultraviolet detection (LC-UV) method, allowing for the simultaneous determination of these six compounds in biological samples in less than 2.5 min with standard LC equipment. Using this method for the assessment of the stability of the six analytes, we demonstrated that all stilbene polyphenols disappear rapidly in Dulbecco's modified Eagle's medium (e.g., half-life of resveratrol of 1 h). In contrast, the tetramer hopeaphenol was stable over the maximum incubation time of 72 h. In incubations with liver microsomes, ε-viniferin was rapidly glucuronidated, although to a lower extent than resveratrol. Hopeaphenol was not glucuronidated at all. Given that glucuronidation is the major metabolic pathway for polyphenols, hopeaphenol might exhibit significantly different pharmacokinetic properties than other polyphenols. When chemical and metabolic stability as well as biological activity of hopeaphenol are taken together, these findings warrant further investigation of this polyphenol. Topics: Benzofurans; Chromatography, Liquid; Drug Stability; Glucuronides; Humans; Microsomes, Liver; Molecular Structure; Phenols; Polyphenols; Resveratrol; Stilbenes | 2012 |
Activity-guided isolation of resveratrol oligomers from a grapevine-shoot extract using countercurrent chromatography.
An activity-guided isolation of bioactive stilbenes has been carried out with the grapevine-shoot extract Vineatrol 30. After hexane precipitation of the polymeric constituents, the stilbene mixture was separated on a preparative scale using low-speed rotary countercurrent chromatography (LSRCCC). The antiproliferative activity of the separated LSRCCC fractions was then screened in the human cancer cell line A-431, and trans-resveratrol, trans-ε-viniferin, r-2-viniferin, hopeaphenol, and miyabenol C were identified as active principles. In addition, a new class of stilbene derivatives, which exhibit a γ-lactam ring structure and exert a weak growth-inhibiting activity in A-431 cells, has been identified. Topics: Antineoplastic Agents, Phytogenic; Benzofurans; Cell Line, Tumor; Chemical Fractionation; Countercurrent Distribution; Drug Screening Assays, Antitumor; Humans; Molecular Structure; Phenols; Plant Shoots; Resveratrol; Stilbenes; Vitis | 2012 |
Protective effect of ε-viniferin on β-amyloid peptide aggregation investigated by electrospray ionization mass spectrometry.
Abnormal β-amyloid peptide accumulation and aggregation is considered to be responsible for the formation and cerebral deposition of senile plaques in the brains of patients with Alzheimer's disease (AD). Inhibition of the formation of β-amyloid (Aβ) fibrils would be an attractive therapeutic target for the treatment of AD. Resveratrol and its derivatives exhibit a broad range of pharmacological properties such as protection against cardiovascular diseases and cancers, as well as promoting antiaging effects. We reported previously that ε-viniferin glucoside (VG), a resveratrol-derived dimer, strongly inhibits Aβ (25-35) fibril formation in vitro. In this study, we investigated the effects of VG on the aggregation of the full-length peptides (Aβ (1-40) and Aβ (1-42)) and on the β-amyloid-induced toxicity in PC12 cells. VG inhibited Aβ cytotoxicity and the non-covalent complex between VG and Aβ was observed by electrospray ionization mass spectrometry. Topics: Alzheimer Disease; Amyloid beta-Peptides; Animals; Benzofurans; Humans; PC12 Cells; Rats; Spectrometry, Mass, Electrospray Ionization; Stilbenes; Vitis | 2011 |
Greater effectiveness of ε-viniferin in red wine than its monomer resveratrol for inhibiting vascular smooth muscle cell proliferation and migration.
Resveratrol is a strong candidate for explaining an irreversible correlation between red wine consumption and coronary heart disease. The present study examined the effect of ε-viniferin, a dehydrodimer of resveratrol, on vascular smooth muscle cells (VSMCs), because ε-viniferin functions are poorly understood in spite of its comparable content to resveratrol in red wines and grapes. Both ε-viniferin and resveratrol inhibited platelet-derived growth factor-induced cell proliferation, migration, and reactive oxygen species (ROS) production, in addition to inducing nitric oxide generation. ε-Viniferin was more effective than resveratrol in these effects, except for inhibiting ROS production. The compounds also increased the expression of the antioxidant enzyme, hemeoxygenase-1, via transcription factor Nrf2. The phosphatidylinositol 3-kinase-Akt pathway was implicated in resveratrol-dependent nuclear Nrf2 accumulation, whereas extracellular signal-regulated kinase and p38 were involved in ε-viniferin-induced Nrf2 accumulation. These data suggest that ε-viniferin may function more effectively than resveratrol in different mechanisms and cooperatively with resveratrol in preventing atherosclerosis. Topics: Animals; Atherosclerosis; Benzofurans; Cell Movement; Cell Proliferation; Cells, Cultured; Extracellular Signal-Regulated MAP Kinases; Heme Oxygenase-1; Mitogen-Activated Protein Kinases; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; Nitric Oxide; p38 Mitogen-Activated Protein Kinases; Phosphatidylinositol 3-Kinases; Platelet-Derived Growth Factor; Proto-Oncogene Proteins c-akt; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species; Resveratrol; Stilbenes; Wine | 2011 |
Effects of elicitors on the production of resveratrol and viniferins in cell cultures of Vitis vinifera L. cv Italia.
Methyl jasmonate, jasmonic acid and chitosan were tested as elicitors on cell suspension cultures obtained from Vitis vinifera cv Italia to investigate their effect on stilbene production. Stilbene accumulation in the callus, grown under nonelicited conditions, was also investigated. Calli and cell suspensions were obtained in a B5 culture medium supplemented with 0.2 mg L(-1) NAA and 1 mg L(-1) KIN. Stilbene determination was achieved by HPLC/DAD/MS. Whereas callus biosynthesized only piceid, cell suspensions elicited with jasmonates produced several stilbenes, mainly viniferins. In suspended cells, methyl jasmonate and jasmonic acid were the most effective in stimulating stilbene biosynthesis, whereas chitosan was less effective; in fact, the amount of stilbenes obtained with this elicitor was not significantly different from that obtained for the control cells. The maximum production of total stilbenes was at day 20 of culture with 0.970 and 1.023 mg g(-1) DW for MeJA and JA, respectively. Topics: Acetates; Benzofurans; Cells, Cultured; Chitosan; Cyclopentanes; Oxylipins; Plant Growth Regulators; Plant Stems; Resorcinols; Resveratrol; Stilbenes; Vitis | 2011 |
Leaf and stem of Vitis amurensis and its active components protect against amyloid β protein (25-35)-induced neurotoxicity.
This study investigated a methanol extract from the leaf and stem of Vitis amurensis (Vitaceae) for possible neuroprotective effects on neurotoxicity induced by amyloid β protein (Aβ) (25-35) in cultured rat cortical neurons and also for antidementia activity in mice. Exposure of cultured cortical neurons to 10 μM Aβ (25-35) for 36 h induced neuronal apoptotic death. At concentrations of 1-10 μg/mL, V. amurensis inhibited neuronal death, the elevation of intracellular calcium ([Ca(2+)](i)) and the generation of reactive oxygen species (ROS), all of which were induced by Aβ (25-35) in primary cultures of rat cortical neurons. Memory loss induced by intracerebroventricular injection of ICR mice with 16 nmol Aβ (25-35) was inhibited by chronic treatment with V. amurensis extract (50 and 100 mg/kg, p.o. for 7 days), as measured by a passive avoidance test. Amurensin G, r-2-viniferin and trans-ɛ-viniferin isolated from V. amurensis also inhibited neuronal death, the elevation of [Ca(2+)](i) and the generation of ROS induced by Aβ (25-35) in cultured rat cortical neurons. These results suggest that the neuroprotective effect of V. amurensis may be partially attributable to these compounds. These results suggest that the antidementia effect of V. amurensis is due to its neuroprotective effect against Aβ (25-35)-induced neurotoxicity and that the leaf and stem of V. amurensis have possible therapeutic roles for preventing the progression of Alzheimer's disease. Topics: Acetylcholinesterase; Alzheimer Disease; Amyloid beta-Peptides; Animals; Apoptosis; Benzofurans; Cells, Cultured; Cerebral Cortex; Dibenzocycloheptenes; Dose-Response Relationship, Drug; Embryo, Mammalian; GPI-Linked Proteins; Male; Memory Disorders; Mice; Mice, Inbred ICR; Neurons; Neuroprotective Agents; Peptide Fragments; Phytotherapy; Plant Extracts; Plant Leaves; Plant Stems; Rats; Rats, Sprague-Dawley; Resorcinols; Stilbenes; Vitis | 2010 |
Effects of resveratrol analogs on cell cycle progression, cell cycle associated proteins and 5fluoro-uracil sensitivity in human derived colon cancer cells.
Epidemiological studies suggested that trans-resveratrol, a wine grape component, could prevent malignant tumor development. This compound also demonstrated cytostatic and cytotoxic effects on tumor cells in vitro. To obtain trans-resveratrol derivatives with a better cellular uptake and enhanced antiproliferative effects, we synthesized a triacetate derivative as well as an oligomer, epsilon-viniferin and its acetylated form, epsilon-viniferin penta-acetate. We also obtained vineatrol, a wine grape shoot extract that associates several polyphenols that may act synergistically, including trans-resveratrol and epsilon-viniferin. We show here that resveratrol triacetate and vineatrol are as efficient as trans-resveratrol in inducing the accumulation of human colon cancer cells in early S phase of the cell cycle. This effect is associated with a nuclear redistribution of cyclin A and the formation of a cyclin A/cyclin-dependent kinase 2 complex whose kinase activity is increased. In contrast, epsilon-viniferin and its acetylated form do not demonstrate any significant activity on these cells when tested alone. Interestingly, resveratrol triacetate and vineatrol dramatically enhance 5-Fluoro-Uracil-mediated inhibition of colon cancer cell proliferation. Thus, acetylated derivatives of resveratrol have retained the cytostatic and cytotoxic activities of the parental molecule and thus deserve to be tested as chemosensitizers in animal models. Topics: Antimetabolites, Antineoplastic; Benzofurans; Blotting, Western; Cell Cycle; Cell Cycle Proteins; Cell Proliferation; Colonic Neoplasms; Drug Synergism; Flow Cytometry; Fluorescent Antibody Technique; Fluorouracil; Humans; Immunoenzyme Techniques; Immunoprecipitation; Phenols; Resveratrol; Stilbenes; Tumor Cells, Cultured | 2009 |
Optimization of solid-liquid extraction of resveratrol and other phenolic compounds from milled grape canes (Vitis vinifera).
Optimization of the solid-liquid extraction conditions for trans-resveratrol, trans--viniferin, ferulic acid, and total phenolics from milled grape canes has been investigated. The temperature and ethanol concentration were found to be major process variables for all responses, whereas the solvent to solid ratio was found not to be significant for any of the responses studied. The yields of trans-resveratrol, trans--viniferin, and total phenolics increased with increasing temperature. Maximum yields of trans-resveratrol (4.25 mg/g dw), trans--viniferin (2.03 mg/g), and total phenolics (9.28 mg/g dw) were predicted from the combination of a moderate ethanol concentration (50-70%) and the highest temperature (83.6 degrees C), whereas an ethanol concentration of 35% at the lowest temperature studied (16.4 degrees C) was optimal for the extraction of ferulic acid (1.05 mg/g dw). Effective diffusivity values of resveratrol in the solid phase, D eff for different extraction conditions, were calculated by fitting the experimental results to a model derived from the Fick's second law. Effective diffusivity of resveratrol in the solid phase varied from 3.1 x 10 (-13) to 26.6 x 10 (-13) m (2) s (-1) with changing extraction conditions. The increase in effective diffusivity of resveratrol was observed with increasing temperature, and the highest predicted level was obtained when using 54% ethanol/water mixture at 83.6 degrees C. The increase in ethanol concentration exhibited the favorable effect up to 50-55%, thereafter effective diffusivity decreased with a further increase in concentration. Topics: Benzofurans; Coumaric Acids; Ethanol; Phenols; Plant Stems; Resveratrol; Solutions; Solvents; Stilbenes; Temperature; Vitis | 2008 |
Effect of lime-induced leaf chlorosis on ochratoxin A, trans-resveratrol, and epsilon-viniferin production in grapevine (Vitis vinifera L.) berries infected by Aspergillus carbonarius.
Berries of Vitis vinifera L. cv. Merlot, grown on a neutral or calcareous soil, were infected, at phenological phases of veraison and ripening, by a conidial suspension of Aspergillus carbonarius to control ochratoxin A production and trans-resveratrol- and epsilon-viniferin-induced synthesis as affected by the soil lime content. Chlorosis occurrence was evaluated by a visual rating scale at veraison, and the leaves from vines growing on the calcareous soil showed the typical yellowing, whereas those grown on the neutral soil were dark green. Berry mineral element yield was recorded at veraison and ripening. Infection symptoms on berries were more severe at ripening in bunches collected from vines grown in calcareous soil. Ochratoxin A concentration increased at phenological phase of veraison in berries harvested from vines cultivated in calcareous soil. A. carbonarius enhanced trans-resveratrol and epsilon-viniferin production in infected berries more than in the control samples. Moreover, at veraison their concentration in the berries collected from vines grown in calcareous soil was greater than that recorded from berries collected from vines grown in the neutral soil. The lowest symptom severity was observed on berries containing the highest copper concentration. Topics: Aspergillus; Benzofurans; Calcium Compounds; Fruit; Iron; Ochratoxins; Oxides; Plant Diseases; Plant Leaves; Resveratrol; Soil; Stilbenes; Vitis | 2008 |
(-)-Trans-epsilon-viniferin, a polyphenol present in wines, is an inhibitor of noradrenaline and 5-hydroxytryptamine uptake and of monoamine oxidase activity.
(-)-Trans-epsilon-viniferin (epsilon-viniferin, 5-200 microM), a dimer of resveratrol, concentration-dependently inhibited the uptake of [3H]noradrenaline and [3H]5-HT by synaptosomes from rat brain (being slightly but significantly more selective against [3H]noradrenaline) and the uptake of [3H]5-HT by human platelets. On the other hand, epsilon-viniferin (5-200 microM) concentration-dependently inhibited the enzymatic activity of commercial (human recombinant) monoamine oxidase (MAO) isoform (MAO-A and MAO-B) activity, being slightly but significantly more selective against MAO-B than against MAO-A. Taking into account that the principal groups of drugs used to treat major depression are noradrenaline/5-HT uptake or MAO inhibitors, under the assumption that epsilon-viniferin exhibits a similar behaviour in humans in vivo, our results suggest that this natural polyphenol may be of value as a structural template for the design and development of new antidepressant drugs with two important biochemical activities combined in the same chemical structure: noradrenaline/5-HT uptake and MAO inhibitory activity. Topics: Animals; Benzofurans; Blood Platelets; Brain; Cell Line; Citalopram; Clorgyline; Dose-Response Relationship, Drug; Fluoxetine; Humans; Imipramine; Iproniazid; Isoenzymes; Male; Monoamine Oxidase; Monoamine Oxidase Inhibitors; Norepinephrine; Rats; Rats, Sprague-Dawley; Recombinant Proteins; Selegiline; Serotonin; Stilbenes; Synaptosomes; Tritium; Wine | 2006 |
Viniferin formation by COX-1: evidence for radical intermediates during co-oxidation of resveratrol.
Resveratrol (1) is a polyphenolic natural product, which functions as both a mechanism-based inactivator and a co-reductant of the COX-1 peroxidase. These functions are mediated through different moieties on the molecule, namely, the m-hydroquinone moiety (mechanism-based inactivator) and the phenol moiety (co-reductant). Implicit in this bifunctionality is the notion that resveratrol is oxidized at the peroxidase active site of COX-1, resulting in the formation of two hypothetical radical species. Oxidation of the m-hydroquinone moiety can generate a hypothetical m-semiquinone radical, which is unstabilized and leads to irreversible enzyme inactivation. Oxidation of the phenol moiety can generate a hypothetical phenoxy radical, which is stabilized and leads to co-reduction during peroxidase catalysis. These two radicals have been trapped as the resveratrol dimers, cis-epsilon-viniferin (4, trapped m-semiquinone radical) and trans-delta-viniferin (5, trapped phenoxy radical), and identified by liquid chromatography (LC), absorbance spectroscopy, and LC/tandem mass spectrometry (MS(n)) methods. Methoxy-resveratrol analogues, in which either the m-hydroquinone or the phenol moiety were protected as methyl ethers, were used to confirm the proposed mechanism of viniferin production by COX-1. Topics: Benzofurans; Catalysis; Chromatography, High Pressure Liquid; Cyclooxygenase 1; Mass Spectrometry; Models, Chemical; Molecular Structure; Oxidation-Reduction; Prostaglandin-Endoperoxide Synthases; Resorcinols; Resveratrol; Stilbenes; Structure-Activity Relationship | 2005 |
Determination of stilbenes (delta-viniferin, trans-astringin, trans-piceid, cis- and trans-resveratrol, epsilon-viniferin) in Brazilian wines.
Phenolics from grapes and wines can play a role against oxidation and development of atherosclerosis. Stilbenes have been shown to protect lipoproteins from oxidative damage and to have cancer chemopreventive activity. We describe a method for the direct determination of stilbenes in several red wines using high-performance liquid chromatography with UV detection. In a survey of 12 commercial wines from the south of Brazil (Rio Grande del Sul), levels of delta-viniferin are reported for the first time in different varieties of red wines. Brazilian red wine contains trans-astringin, trans-piceid, trans-resveratrol, cis-resveratrol (in high quantity: 5 times more than the trans form), epsilon-viniferin, and a compound isolated for the first time in wine, trans-delta-viniferin. Isolation and identification of delta-viniferin was achieved by NMR after extraction and fractionation of red wine phenolics. delta-Viniferin contributes, as well as cis-resveratrol and trans-piceid, to a significant proportion of stilbenes in wine dietary intake, particularly with Merlot varieties containing an average level of 10 mg/L for delta-viniferin, 15 mg/L for cis-resveratrol, and 13 mg/L for trans-piceid. The total stilbene intake from wine origin was estimated for the Brazilian population as 5.3 mg/day per person (on the basis of a regular wine consumption of 160 mL/day). delta-Viniferin can contribute to around 20% of total stilbenes in wine (average of 6.4 mg/L in red Brazilian wines). It would be important in the future to investigate the origins of the differences in wine stilbene levels in relation to the vine varieties, and the bioavailability of the newly extracted stilbene delta-viniferin in plasma after consumption of different types of wines. Topics: Benzofurans; Brazil; Chromatography, High Pressure Liquid; Glucosides; Magnetic Resonance Spectroscopy; Resorcinols; Resveratrol; Stilbenes; Wine | 2005 |
Reverse pharmacognosy: application of selnergy, a new tool for lead discovery. The example of epsilon-viniferin.
The aim of reverse pharmacognosy is to find new biological targets for natural compounds by virtual or real screening and identify natural resources that contain the active molecules. To demonstrate the applicability of this concept, we report here a study on epsilon-viniferin, an active ingredient for cosmetic development. Nevertheless, this natural substance is weakly defined in terms of biological properties. SELNERGY, an inverse docking computer software, was used to identify putative binding biological targets for epsilon-viniferin. Among the 400 screened proteins two targets were retained. For cosmetic application, cyclic nucleotide phosphodiesterase 4 (PDE4) was the most interesting candidate. Moreover, other PDE subtypes (1, 2, 3, 5 and 6) were not retained, indicating a selectivity for PDE4. The experimental binding tests on the 6 subtypes of PDE revealed a significant selectivity of epsilon-viniferin for the PDE4 subtype. This selectivity was confirmed by evaluation of epsilon-viniferin on the secretion of TNF-alpha and Interleukin-8. Our data demonstrated that epsilon-viniferin possesses anti-inflammatory properties by inhibiting PDE4 subtype. In conclusion, reverse pharmacognosy and its inverse docking component cannot only be integrated into a program for new lead discovery but is also a useful approach to find new applications for identified compounds. Topics: Benzofurans; Drug Design; Humans; Interleukin-8; Keratinocytes; Leukocytes, Mononuclear; Models, Molecular; Pharmacognosy; Phosphoric Diester Hydrolases; Software; Stilbenes; Tumor Necrosis Factor-alpha | 2005 |
Regioselective oxidative coupling of 4-hydroxystilbenes: synthesis of resveratrol and epsilon-viniferin (E)-dehydrodimers.
Treatment of 5-[2-(4-hydroxyphenyl)vinyl]benzene-1,3-diol (resveratrol) with an equimolar amount of silver(I) acetate in dry MeOH at 50 degrees C for 1 h followed by chromatographic purification with a short silica gel column allowed the isolation of its (E)-dehydrodimer, 5-[5-[2-(3,5-dihydroxyphenyl)vinyl]-2-(4-hydroxyphenyl)-2,3-dihydrobenzofuran-3-yl]benzene-1,3-diol, as a racemic mixture in high yield. The present method was applicable to the oxidative dimerization of 4-hydroxystilbenes such as trans-styrylphenol and 5-[6-hydroxy-2-(4-hydroxyphenyl)-4-[2-(4-hydroxyphenyl)vinyl]-2,3-dihydrobenzofuran-3-yl]benzene-1,3-diol (epsilon-viniferin) leading to the corresponding 2-(4-hydroxyphenyl)-2,3-dihydrobenzofurans possessing various types of biological activities. Topics: Benzofurans; Catalysis; Combinatorial Chemistry Techniques; Indicators and Reagents; Molecular Structure; Oxidation-Reduction; Resveratrol; Stereoisomerism; Stilbenes | 2004 |
Differential inhibition of human cytochrome P450 enzymes by epsilon-viniferin, the dimer of resveratrol: comparison with resveratrol and polyphenols from alcoholized beverages.
epsilon-Viniferin, a dimer of resveratrol, was isolated in wine at concentration between 0.5 and 5 microM. As resveratrol and polyphenols from red wine were reported to inhibit cytochrome P450 (CYP) activities, this led us to investigate the inhibitory effects of epsilon-viniferin on human CYP1A1, CYP1A2, CYP1B1, CYP2A6, CYP2B6, CYP2E1, CYP3A4 and CYP4A activities. These effects were compared to those of resveratrol and non volatiles compounds from red wine or various Cognac(R) beverages (enriched with oak-polyphenols). Assays were carried out on human liver microsomes and heterologously expressed CYPs. Ethoxyresorufin, coumarin, benzoxyresorufin, chlorzoxazone, testosterone and lauric acid were used as selective substrates for CYP1A1, CYP1A2, CYP1B1, CYP2A6, CYP2B6, CYP2E1, CYP3A4 and CYP4A, respectively. epsilon-viniferin displayed a more potent inhibitory effect than resveratrol for all the CYP activities tested (Ki 0.5 to 20 microM vs. 10 to 100 microM, respectively). This effect was not due to an inhibition of the NADPH reductase. A particularly potent inhibitory effect was shown for CYP1A1, CYP1B1 and CYP2B6 which are involved in bioactivation of numerous carcinogens. epsilon-viniferin was not a mechanism-based inhibitor of human CYPs. It displayed, like resveratrol, mixed-type inhibitions for all the CYP tested, except for CYP2E1 (non-competitive). Comparison of the inhibitory effects exerted on CYP activities by epsilon-viniferin, resveratrol and non volatile components from red wine or various Cognac beverages showed that neither resveratrol, nor epsilon-viniferin is the main CYP inhibitor present in red wine solids. Topics: Alcoholic Beverages; Benzofurans; Cytochrome P-450 Enzyme Inhibitors; Dose-Response Relationship, Drug; Enzyme Inhibitors; Flavonoids; Humans; Microsomes, Liver; Phenols; Plant Extracts; Polymers; Polyphenols; Resveratrol; Stilbenes | 2003 |
Diptoindonesin A, a new C-glucoside of epsilon-viniferin from Shorea seminis (Dipterocarpaceae).
A new C-glucoside of epsilon-viniferin, named diptoindonesin A (1), was isolated from the ethyl acetate extract of the tree bark of Shorea seminis, together with the known stilbene oligomers (-)-ampelopsin A (2), (-)-alpha-viniferin (3), and (-)-hopeaphenol (4). The structure of 1 was determined from spectroscopic evidence. Topics: Benzofurans; Ericales; Glucosides; Humans; Magnetic Resonance Spectroscopy; Phytotherapy; Plant Bark; Plant Extracts; Stilbenes | 2002 |
Comparative antiproliferative and apoptotic effects of resveratrol, epsilon-viniferin and vine-shots derived polyphenols (vineatrols) on chronic B lymphocytic leukemia cells and normal human lymphocytes.
Trans-resveratrol, its dimer epsilon-viniferin and two preparations of vineatrol (a grape-derived polyphenol fraction isolated from vine-shots extracts) were compared for their effects on the proliferation and survival of normal and leukemic human lymphocytes. The two different batches of vineatrol (vineatrol 10 and 25%) was obtained by HPLC fractionation and contained 10 and 25% trans-resveratrol, respectively. The different polyphenols were added to cultures of leukemic cells from chronic B cell malignancies (B-cell chronic lymphocytic leukemia, B-CLL or hairy cell leukemia, HCL) or normal peripheral blood-derived mononuclear cells (PBMC) as a control. The different polyphenols displayed anti-proliferative effect on the leukemic cells, as estimated by the observed inhibition of tritiated thymidine uptake and the reduction of cell recovery. Vineatrol 10% was the most potent whereas vineatrol 25% and resveratrol displayed comparable activity, epsilon-viniferin only exhibiting slight effets. The same order of potency was observed for their capacity to induce apoptosis in leukemic B cells. In contrast, the survival of normal peripheral blood mononuclear cells (PBMC) was little affected in the presence of these polyphenolic compounds and higher concentrations were required in order to elicit cell death. Polyphenol-driven apoptosis in chronic leukemic B cells was shown to correlate with an activation of caspase 3, a drop in the mitochondrial transmembrane potential, a reduction in the expression of the anti-apoptotic protein bcl-2, as well as a reduction in the expression of the inducible nitric oxide synthase (iNOS). Our data therefore indicate that vine-shoots may be a convenient and natural source of material for the purification of resveratrol and other polyphenolic compounds of putative therapeutic interest. Topics: Antineoplastic Agents, Phytogenic; Apoptosis; B-Lymphocytes; Benzofurans; Caspase 3; Caspases; Cell Division; Flavonoids; Humans; Intracellular Membranes; Leukemia, Lymphocytic, Chronic, B-Cell; Leukocytes, Mononuclear; Membrane Potentials; Mitochondria; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Phenols; Plant Extracts; Polymers; Polyphenols; Proto-Oncogene Proteins c-bcl-2; Resveratrol; Stilbenes; Vitis | 2002 |
Antioxidant properties of trans-epsilon-viniferin as compared to stilbene derivatives in aqueous and nonaqueous media.
trans-Epsilon-viniferin, the dimer of resveratrol, extracted from Vitis vinifera, has been evaluated for its antioxidant capacity. Its properties have been compared to those of resveratrol and synthetic stilbenic derivatives (4-hydroxystilbene, 4,4'-dihydroxystilbene, 3,5-dihydroxystilbene, and trimethylresveratrol), in regard to their liposolubility using two media with different polarity. The bleaching of beta-carotene by lipoperoxyl (LOO.) radicals in an oil/water (O/W) emulsion and the scavenging of superoxide anions (O(-)(2) in dimethyl sulfoxide (DMSO) using 5,5-dimethyl-1-pyrroline-N-oxide as a spin trap were followed using UV-visible and electron paramagnetic resonance, respectively. Epsilon-viniferin exhibits the best antioxidant capacity in the DMSO/O(-)(2) polar system (IC(50) = 0.14 mM) while 4,4'-dihydroxystilbene presents the highest antioxidant capacity in the O/W/LOO. system (inhibition of beta-carotene bleaching, 82%). Partition coefficients and kinetics of partition between 1-octanol and water were measured to discuss the antioxidant efficiency of the compounds in relation with their chemical structure. Topics: Antioxidants; Benzofurans; Fruit; Lipid Peroxides; Molecular Structure; Plant Extracts; Plant Roots; Solutions; Stilbenes; Water | 2002 |
[Studies on chemical constituents of oligostilbenes from Vitis davidii Foex].
To study the chemical constituents of oligostilbenes from Vitis davidii.. Compounds were isolated with polystyrene resin RA, silica gel and C18 column chromatography. The structures were elucidated by means of spectroscopic evidence.. Seven compounds were obtained and identified as resveratrol, heyneanol A, ampelopsin E, amurensin B, (+)-epsilon-viniferin, vitisin A and amurensin G.. All the compounds were isolated from this plant for the first time. Topics: Benzofurans; Phenols; Plants, Medicinal; Resveratrol; Stilbenes; Vitis | 2001 |
Oligostilbenoids in stem bark of Vatica rassak.
Three resveratrol oligomers, vaticanols. A, B and C, as well as three known stilbenoids, resveratrol, piceid and epsilon-viniferin were isolated from the stem bark of Vatica rassak (Dipterocarpaceae). Their structures were determined by the analysis of NMR spectral data including the application of 2D methods. Topics: Benzofurans; Glucosides; Plant Extracts; Plant Stems; Resveratrol; Stilbenes; Trees | 2000 |
Powerful hepatoprotective and hepatotoxic plant oligostilbenes, isolated from the Oriental medicinal plant Vitis coignetiae (Vitaceae).
The methanol extract of the Oriental medicinal plant Vitis coignetiae (Vitaceae) showed hepatoprotective activity in the in vitro assay method using primary cultured rat hepatocytes. Activity-guided fractionation of the extract afforded epsilon-viniferin as an active principle. The protective effect of epsilon-viniferin against mice carbon tetrachloride-induced hepatic injury in mice was shown by serum enzyme assay as well as by pathological examination. In addition to epsilon-viniferin, plant oligostilbenes, ampelopsins A, C, F and the mixture of vitisin A and cis-vitisin A were also present in the extract. Among them, ampelopsin C and the mixture of vitisin A and cis-vitisin A were found to be powerful hepatotoxins. Topics: Animals; Benzofurans; Carbon Tetrachloride Poisoning; Chemical and Drug Induced Liver Injury; Liver Diseases; Male; Mice; Molecular Structure; Plants, Medicinal; Stilbenes | 1995 |