stilbenes has been researched along with beauvericin* in 2 studies
2 other study(ies) available for stilbenes and beauvericin
Article | Year |
---|---|
Antioxidant capacity of trans-resveratrol dietary supplements alone or combined with the mycotoxin beauvericin.
Trans-resveratrol (trans-RSV) is a polyphenol with multiples biological properties, such as anti-inflammatory, antioxidant, anti-aging, anti-diabetic, and antiplatelet. It occurs naturally in grapes and derivate, peanuts and berries. Beauvericin (BEA) is a mycotoxin present in cereals that produces cytotoxicity, intracellular reactive oxygen species and lipid peroxidation. The general objective of this research was to evaluate whether trans-RSV could be used as a good polyphenol against damages produced by BEA. Because trans-RSV can be ingested through dietary supplements, to reach this goal, the following specific objectives were proposed: to determine a) the trans-RSV content in different polyphenol dietary supplements by capillary electrophoresis, b) the antioxidant capacity of the trans-RSV in polyphenol supplements, and c) the influence of BEA in the antioxidant capacity of trans-RSV when they are in combination by photochemioluminiscence assay. The results obtained in this study showed that all polyphenol dietary supplements present higher RSV content that the content of the label. The polyphenol supplements present antioxidant capacity. And the combination of trans-RSV and BEA did not affect the antioxidant capacity of trans-RSV. Thus, RSV could contribute to decrease oxidant effects produced by BEA. Topics: Antioxidants; Depsipeptides; Dietary Supplements; Mycotoxins; Resveratrol; Stilbenes | 2017 |
Cytoprotective effect of resveratrol diastereomers in CHO-K1 cells exposed to beauvericin.
Beauvericin (BEA) causes cytotoxicity, lipid peroxidation and reactive oxygen species in CHO-K1 cells. Resveratrol (RSV) is a polyphenol with multiple biological properties, including antioxidant effects. RSV has two forms: trans and cis. The aims of this study were to determine the cytoprotective effect of trans-RSV and diastereomers mixtures (50:50 trans/cis-RSV and 70:30 trans/cis-RSV) incubated alone and in combination with BEA in ovarian (CHO-K1) cells. The results demonstrated that cell viability increases (from 9% to 77%) when they were exposed to low concentration of RSV. Moreover, when the cells were pre-treated with RSV and then exposed to BEA, a cytoprotective effect (from 25% to 76%) and a ROS production diminution (from 27% to 92%) were observed, with respect to cells exposed to BEA without previous RSV exposure. RSV pre-treatment decreased the MDA levels (from 15% to 37%) when it is compared with cells exposed only to BEA. Therefore, it can be concluded that RSV could reduce the toxicological risk produced by BEA when they are in combination. Topics: Animals; CHO Cells; Cricetinae; Cricetulus; Cytoprotection; Depsipeptides; Lipid Peroxidation; Reactive Oxygen Species; Resveratrol; Stilbenes | 2015 |