stilbenes has been researched along with antimycin* in 3 studies
3 other study(ies) available for stilbenes and antimycin
Article | Year |
---|---|
Mitochondrial function is involved in regulation of cholesterol efflux to apolipoprotein (apo)A-I from murine RAW 264.7 macrophages.
Mitochondrial DNA damage, increased production of reactive oxygen species and progressive respiratory chain dysfunction, together with increased deposition of cholesterol and cholesteryl esters, are hallmarks of atherosclerosis. This study investigated the role of mitochondrial function in regulation of macrophage cholesterol efflux to apolipoprotein A-I, by the addition of established pharmacological modulators of mitochondrial function.. Murine RAW 264.7 macrophages were treated with a range of concentrations of resveratrol, antimycin, dinitrophenol, nigericin and oligomycin, and changes in viability, cytotoxicity, membrane potential and ATP, compared with efflux of [3H]cholesterol to apolipoprotein (apo) A-I. The effect of oligomycin treatment on expression of genes implicated in macrophage cholesterol homeostasis were determined by quantitative polymerase chain reaction, and immunoblotting, relative to the housekeeping enzyme, Gapdh, and combined with studies of this molecule on cholesterol esterification, de novo lipid biosynthesis, and induction of apoptosis. Significant differences were determined using analysis of variance, and Dunnett's or Bonferroni post t-tests, as appropriate.. The positive control, resveratrol (24 h), significantly enhanced cholesterol efflux to apoA-I at concentrations ≥30 μM. By contrast, cholesterol efflux to apoA-I was significantly inhibited by nigericin (45%; p<0.01) and oligomycin (55%; p<0.01), under conditions (10 μM, 3 h) which did not induce cellular toxicity or deplete total cellular ATP content. Levels of ATP binding cassette transporter A1 (ABCA1) protein were repressed by oligomycin under optimal efflux conditions, despite paradoxical increases in Abca1 mRNA. Oligomycin treatment did not affect cholesterol biosynthesis, but significantly inhibited cholesterol esterification following exposure to acetylated LDL, and induced apoptosis at ≥30 μM. Finally, oligomycin induced the expression of genes implicated in both cholesterol efflux (Abca1, Abcg4, Stard1) and cholesterol biosynthesis (Hmgr, Mvk, Scap, Srebf2), indicating profound dysregulation of cholesterol homeostasis.. Acute loss of mitochondrial function, and in particular Δψm, reduces cholesterol efflux to apoA-I and dysregulates macrophage cholesterol homeostasis mechanisms. Bioavailable antioxidants, targeted to mitochondria and capable of sustaining effective mitochondrial function, may therefore prove effective in maintenance of arterial health. Topics: Animals; Antimycin A; Apolipoproteins A; Atherosclerosis; Cell Line; Cell Survival; Cholesterol; Cholesterol Esters; DNA, Mitochondrial; Macrophages; Membrane Potential, Mitochondrial; Mice; Mitochondria; Nigericin; Oligomycins; Reactive Oxygen Species; Resveratrol; RNA, Messenger; Stilbenes | 2012 |
Inhibitory analogs of ubiquinol act anti-cooperatively on the Yeast cytochrome bc1 complex. Evidence for an alternating, half-of-the-sites mechanism of ubiquinol oxidation.
The cytochrome bc(1) complex is a dimeric enzyme that links electron transfer from ubiquinol to cytochrome c by a protonmotive Q cycle mechanism in which ubiquinol is oxidized at one center in the enzyme, referred to as center P, and ubiquinone is re-reduced at a second center, referred to as center N. To understand better the mechanism of ubiquinol oxidation, we have examined the interaction of several inhibitory analogs of ubiquinol with the yeast cytochrome bc(1) complex. Stigmatellin and methoxyacrylate stilbene, two inhibitors that block ubiquinol oxidation at center P, inhibit the yeast enzyme with a stoichiometry of 0.5 per bc(1) complex, indicating that one molecule of inhibitor is sufficient to fully inhibit the dimeric enzyme. This stoichiometry was obtained when the inhibitors were titrated in cytochrome c reductase assays and in reactions of quinol with enzyme in which the inhibitors block pre-steady state reduction of cytochrome b. As an independent measure of inhibitor binding, we titrated the red shift in the optical spectrum of ferrocytochrome b with methoxyacrylate stilbene and thus confirmed the results of the inhibition of activity titrations. The titration curves also indicate that the binding is anti-cooperative, in that a second molecule of inhibitor binds with much lower affinity to a dimer in which an inhibitor molecule is already bound. Because these inhibitors bind to the ubiquinol oxidation site in the bc(1) complex, we propose that the yeast cytochrome bc(1) complex oxidizes ubiquinol by an alternating, half-of-the-sites mechanism. Topics: Anti-Bacterial Agents; Antimycin A; Electron Transport Complex III; Fungal Proteins; Oxidation-Reduction; Polyenes; Saccharomyces cerevisiae; Stilbenes; Ubiquinone | 2002 |
Mitochondria and cells produce reactive oxygen species in virtual anaerobiosis: relevance to ceramide-induced apoptosis.
Observations of apoptosis in virtual anaerobiosis have raised doubts on the significance of reactive oxygen species in the cascade of events of programmed cell death. This work presents evidence that cells and mitochondrial preparations produce similar levels of hydrogen peroxide under either aerobic or virtually anaerobic conditions. These levels are relevant to the increased production of radicals induced by a ceramide analog that promotes apoptosis. This ceramide acts at center o of mitochondrial complex III. Topics: Anaerobiosis; Animals; Antimycin A; Apoptosis; Cattle; Ceramides; COS Cells; Electron Transport Complex III; Enzyme Inhibitors; Hydrogen Peroxide; Mitochondria, Heart; Reactive Oxygen Species; Stilbenes; Submitochondrial Particles | 1998 |