stilbenes and 5-hydroxy-6-8-11-14-eicosatetraenoic-acid

stilbenes has been researched along with 5-hydroxy-6-8-11-14-eicosatetraenoic-acid* in 3 studies

Other Studies

3 other study(ies) available for stilbenes and 5-hydroxy-6-8-11-14-eicosatetraenoic-acid

ArticleYear
Effects of stilbenes isolated from medicinal plants on arachidonate metabolism and degranulation in human polymorphonuclear leukocytes.
    Journal of ethnopharmacology, 1995, Volume: 45, Issue:2

    Studies were made on the effects of stilbene derivatives isolated from medicinal plants on arachidonate metabolism and degranulation in human polymorphonuclear leukocytes (PMN-L). Resveratrol (3,4',5-trihydroxystilbene) isolated from the roots of Reynoutria japonica was found to inhibit the 5-lipoxygenase products 5-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE), 5,12-dihydroxy-6,8,10,14-eicosatetraenoic acid (5,12-diHETE) and leukotriene C4(LTC4); its concentrations for 50% inhibition (IC50) were 8.90 x 10(-6) M, 6.70 x 10(-6) M and 1.37 x 10(-6) M, respectively. The IC50 of 5-HETE, 5,12-diHETE and LTC4 formations of synthetic 3,3',4-trihydroxystilbene were 5.90 x 10(-6) M, 6.30 x 10(-7) M and 8.80 x 10(-7) M, respectively. Moreover, they inhibited the release of lysosomal enzyme such as lysozyme and beta-glucuronidase induced by calcium ionophore A 23187 from human PMN-L at 10(-3)-10(-4) M.

    Topics: Arachidonic Acid; Autoradiography; Calcimycin; Cell Degranulation; Cyclic AMP; Fatty Acids, Unsaturated; Glucuronidase; Humans; Hydroxyeicosatetraenoic Acids; Leukotriene B4; Leukotriene C4; Lysosomes; Muramidase; Neutrophils; Plant Roots; Plants, Medicinal; Resveratrol; Stilbenes; Structure-Activity Relationship

1995
Effects of stilbenes on arachidonate metabolism in leukocytes.
    Biochimica et biophysica acta, 1985, Apr-25, Volume: 834, Issue:2

    The effects of various stilbenes (i.e, 3,4',5-trihydroxystilbene, 3,4',5-trihydroxystilbene 3-O-D-glucoside and 2,3,4',5-tetrahydroxystilbene 2-O-D-glucoside) isolated from the roots of Polygonum species on rat peritoneal polymorphonuclear leukocyte lipoxygenase and cyclooxygenase activities were studied. Resveratrol (3,4',5-trihydroxystilbene) was found to inhibit the 5-lipoxygenase product, 5-HETE, and cyclooxygenase products, HHT and thromboxane B2; its concentrations for 50% inhibition (IC50) were 2.72 +/- 0.262 microM for the leukocyte lipoxygenase product, 5-HETE, 0.683 +/- 0.163 microM for the formations of HHT and 0.810 +/- 0.274 microM for the formation of thromboxane B2. Piceid (3,4',5-trihydroxystilbene 3-O-D-glucoside) and 2,3,4',5-tetrahydroxystilbene 2-O-D-glucoside also inhibited the formation of 5-HETE, HHT and thromboxane B2, although less strongly. Their IC50 values were, respectively, 55.3 +/- 15.3 microM and greater than 1000 microM for the formation of 5-HETE, 196.7 +/- 48.0 microM and 300.0 +/- 10.4 microM for the formation of HHT and 251.7 +/- 24.9 microM and 366.7 +/- 37.1 microM for the formation of thromboxane B2.

    Topics: Animals; Arachidonic Acid; Arachidonic Acids; Cell Aggregation; Fatty Acids, Unsaturated; Hydroxyeicosatetraenoic Acids; Leukocytes; Plants, Medicinal; Rats; Stilbenes; Thromboxane B2

1985
Effects of stilbene derivatives on arachidonate metabolism in leukocytes.
    Biochimica et biophysica acta, 1985, Nov-14, Volume: 837, Issue:2

    The effects of various alpha-phenylcinnamic acid derivatives (i.e., alpha-(3,4-dihydroxyphenyl)cinnamic acid, alpha-(3,4-dihydroxyphenyl)-3-hydroxycinnamic acid, alpha-(3,4-dihydroxyphenyl)-4-hydroxycinnamic acid and alpha-(3,4-dihydroxyphenyl)-3, 4-dihydroxycinnamic acid) synthesized from 3,4-dihydroxyphenyl acetic acid and hydroxy-benzaldehyde, and 3,3',4-trihydroxystilbene obtained by decarboxylation of alpha-(3,4-dihydroxyphenyl)-3-hydroxycinnamic acid on rat peritoneal polymorphonuclear leukocyte lipoxygenase and cyclooxygenase activities were studied. 3,3',4-Trihydroxystilbene was found to inhibit the 5-lipoxygenase product, 5-hydroperoxy-6,8,11,14-eicosatetraenoic acid (5-HETE), and cyclooxygenase products, 12-hydroxy-5,8,10-heptadecatrienoic acid (HHT) and thromboxane B2; its concentrations for 50% inhibition (IC50) were 0.885 +/- 0.016 microM for the leukocyte lipoxygenase product, 5-HETE, 7.70 +/- 0.104 microM for the formations of HHT and 7.96 +/- 0.143 microM for the formation of thromboxane B2. Alpha-(3,4-Dihydroxyphenyl)cinnamic acid, alpha-(3,4-dihydroxyphenyl)-3-hydroxycinnamic acid and alpha-(3,4-dihydroxyphenyl)-3,4-dihydroxycinnamic acid also inhibited the formations of 5-HETE, HHT and thromboxane B2, although less strongly. Their IC50 values were, respectively, 91.3 +/- 3.62 microM, 947.5 +/- 28.7 microM, 453.3 +/- 229.3 microM and 148.8 +/- 50.6 microM for the formation of 5-HETE, 894.0 +/- 5.57 microM, 792.5 +/- 15.9 microM, greater than 1000 microM and 925.0 +/- 7.64 microM for the formation of HHT and 941.0 +/- 18.0 microM, 825 +/- 14.4 microM, greater than 1000 microM and 932.7 +/- 3.93 microM for the formation of thromboxane B2.

    Topics: Animals; Arachidonic Acid; Arachidonic Acids; Dose-Response Relationship, Drug; Fatty Acids, Unsaturated; Hydroxyeicosatetraenoic Acids; In Vitro Techniques; Leukocytes; Rats; Stilbenes; Thromboxane B2

1985