stilbenes has been researched along with 1-phenylpropanol* in 4 studies
4 other study(ies) available for stilbenes and 1-phenylpropanol
Article | Year |
---|---|
Improving key enzyme activity in phenylpropanoid pathway with a designed biosensor.
Overexpressing key enzymes of biosynthetic pathways for overproduction of value-added products usually imposes metabolic burdens on cells, which can be circumvented by improving the key enzyme activities. p-Coumarate: CoA ligase (4CL) is a critical enzyme in the phenylpropanoid pathway that synthesizes various natural products. To screen for 4CL with improved activity, a biosensor of resveratrol whose biosynthetic pathway involves 4CL was designed by engineering the TtgR regulatory protein. The biosensor exhibited good specificity and robustness, allowing rapid and sensitive selection of resveratrol hyper-producers. A 4CL variant with improved activity was selected from a 4CL mutagenesis library constructed in the resveratrol biosynthetic pathway in Escherichia coli. This mutant led to increased production of not only resveratrol but also the flavonoid naringenin, when introduced in their corresponding biosynthetic pathways. These findings demonstrate the feasibility of improving key enzyme activities in important biosynthetic pathways with the aid of designed biosensors of pathway products. Topics: Biosensing Techniques; Biosynthetic Pathways; Coenzyme A Ligases; Coumaric Acids; Enzyme Activation; Escherichia coli; Flavanones; Gene Expression Regulation, Enzymologic; Genetic Enhancement; Metabolic Engineering; Metabolic Networks and Pathways; Propanols; Resveratrol; Stilbenes; Up-Regulation | 2017 |
Disclosing the Molecular Basis of the Postharvest Life of Berry in Different Grapevine Genotypes.
The molecular events that characterize postripening grapevine berries have rarely been investigated and are poorly defined. In particular, a detailed definition of changes occurring during the postharvest dehydration, a process undertaken to make some particularly special wine styles, would be of great interest for both winemakers and plant biologists. We report an exhaustive survey of transcriptomic and metabolomic responses in berries representing six grapevine genotypes subjected to postharvest dehydration under identical controlled conditions. The modulation of phenylpropanoid metabolism clearly distinguished the behavior of genotypes, with stilbene accumulation as the major metabolic event, although the transient accumulation/depletion of anthocyanins and flavonols was the prevalent variation in genotypes that do not accumulate stilbenes. The modulation of genes related to phenylpropanoid/stilbene metabolism highlighted the distinct metabolomic plasticity of genotypes, allowing for the identification of candidate structural and regulatory genes. In addition to genotype-specific responses, a core set of genes was consistently modulated in all genotypes, representing the common features of berries undergoing dehydration and/or commencing senescence. This included genes controlling ethylene and auxin metabolism as well as genes involved in oxidative and osmotic stress, defense responses, anaerobic respiration, and cell wall and carbohydrate metabolism. Several transcription factors were identified that may control these shared processes in the postharvest berry. Changes representing both common and genotype-specific responses to postharvest conditions shed light on the cellular processes taking place in harvested berries stored under dehydrating conditions for several months. Topics: Desiccation; Fruit; Gene Expression Regulation, Developmental; Gene Expression Regulation, Plant; Genes, Plant; Genotype; Metabolome; Metabolomics; Principal Component Analysis; Propanols; Stilbenes; Transcriptome; Vitis | 2016 |
Methyl jasmonate affects phenolic metabolism and gene expression in blueberry (Vaccinium corymbosum).
Blueberry (Vaccinium corymbosum) is a fruit very much appreciated by consumers for its antioxidant potential and health-promoting traits. Its beneficial potential properties are mainly due to a high content of anthocyanins and their amount can change after elicitation with methyl jasmonate. The aim of this work is to evaluate the changes in expression of several genes, accumulation of phenolic compounds and alterations in antioxidant potential in two different blueberry cultivars ('Duke' and 'Blueray') in response to methyl jasmonate (0.1 mM). Results showed that 9 h after treatment, the expression of phenylalanine ammonium lyase, chalcone synthase and anthocyanidin synthase genes was stimulated more in the 'Blueray' variety. Among the phenols measured an increase was recorded also for epicatechin and anthocyanin concentrations. 'Duke' is a richer sourche of anthocyanins compared to 'Blueray', treatment with methyl jasmonate promoted in 'Blueray' an increase in pigments as well as in the antioxidant potential, especially in fully ripe berries, but treated 'Duke' berries had greater levels, which were not induced by methyl jasmonate treatment. In conclusion, methyl jasmonate was, in some cases, an effective elicitor of phenolic metabolism and gene expression in blueberry, though with different intensity between cultivars. Topics: Acetates; Anthocyanins; Biphenyl Compounds; Blueberry Plants; Carbohydrates; Cyclopentanes; Flavonols; Free Radical Scavengers; Gene Expression Regulation, Plant; Genes, Plant; Oxylipins; Phenols; Picrates; Plant Extracts; Propanols; Real-Time Polymerase Chain Reaction; RNA, Messenger; Stilbenes; Sucrose | 2015 |
Characterization of proanthocyanidins in stems of Polygonum multiflorum Thunb as strong starch hydrolase inhibitors.
Characterization of polyphenolic compounds in the stems of P. multiflorum was conducted using HPLC, high resolution LC-MS and LC-MSn. Proanthocyanidins in particular were isolated in 4.8% yield using solvent extraction followed by Sephadex LH-20 fractionation. HPLC analysis using a diol column revealed oligomers (from dimer to nonamer) as minor components, with (epi)catechin monomeric units predominating, and oligomers with higher degree of polymerization being dominant. Thiolysis treatment of the proanthocyanidins using mercaptoacetic acid produced thioether derivatives of (epi)catechin as the major product and a mean value of the degree of polymerization of 32.6 was estimated from the ratio of terminal and extension units of the (epi)catechin. The isolated proanthocyanidins were shown to strongly inhibit α-amylase with an acarbose equivalence (AE) value of 1,954.7 µmol AE/g and inhibit α-glucosidase with an AE value of 211.1 µmol AE/g. Topics: alpha-Amylases; Anthraquinones; Chromatography, High Pressure Liquid; Enzyme Inhibitors; Flavonoids; Hydrolases; Kinetics; Mass Spectrometry; Phenols; Plant Extracts; Plant Stems; Polygonum; Polyphenols; Proanthocyanidins; Propanols; Spectrometry, Mass, Electrospray Ionization; Starch; Stilbenes; Sulfhydryl Compounds | 2013 |