stilbenes has been researched along with 1-1-diphenylethylene* in 3 studies
3 other study(ies) available for stilbenes and 1-1-diphenylethylene
Article | Year |
---|---|
Solvent and temperature effects on diastereodifferentiating Paternó-Büchi reaction of chiral alkyl cyanobenzoates with diphenylethene upon direct versus charge-transfer excitation.
In the Paternó-Büchi reaction of chiral p-cyanobenzoates (1) with 1,1-diphenylethene (2), we revealed that the excited charge-transfer (CT) complex formed upon selective excitation at the CT band is distinctly different in structure and reactivity from the conventional exciplex generated through the direct excitation of acceptor 1 which subsequently associates with donor 2. Thus, the favored diastereoface upon photocycloaddition, as well as the temperature- and solvent-dependent behavior of the product's diastereoselectivity, were highly contrasting, often opposite, to each other upon direct versus CT excitation. From the activation parameters obtained by the Eyring analyses of the diastereoselectivity, we are able to infer that the conventional exciplex is relatively flexible and susceptible to the environmental variants, whereas the CT complex is better pi-pi stacked and more rigid in the ground state and also in the excited state, leading to the significantly smaller differential activation enthalpies and entropies. More interestingly, the signs of the differential activation parameters determined for direct and CT excitation are consistently opposite to each other and the isokinetic temperatures calculated therefrom differ significantly, unambiguously revealing the distinctly different nature in structure and reactivity of these two excited-state complex species. Thus, the combined use of irradiation wavelength, temperature, and solvent provides us with a convenient, powerful tool not only for elucidating the mechanistic details of photoreaction but also for critically controlling the stereochemical outcomes of photochirogenic reaction. Topics: Acetonitriles; Benzoates; Computer Simulation; Cyclization; Cyclohexanes; Furans; Molecular Structure; Solvents; Stereoisomerism; Stilbenes; Styrenes; Temperature; Thermodynamics; Toluene | 2010 |
Relative involvement of protein kinase C and of the estrogen receptor in the cytotoxic action of a population of triphenylethylenes on MCF7 cells as revealed by correspondence factorial (CF) analysis.
A multivariate statistical method, correspondence factorial (CF) analysis, was used to examine the correlations among the protein binding and cell proliferation effects of a series of 36 di- and triphenylethylenes (DPEs and TPEs). The analysis was applied to a study which measured their competition for estradiol binding to cytosol estrogen receptor (ER), their influence on protein kinase C (PKC) activity under different conditions of enzyme activation, their ability to promote the growth of a breast cancer cell line and to inhibit growth at high concentrations (cytotoxicity). The CF analysis revealed several levels of correlation. First, it distinguished those molecules within the population that stimulated rather than inhibited PKC activity. Second, it made apparent a strong correlation between cytotoxicity and inhibition of Ca++ and phosphatidylserine-dependent PKC activity, which was most marked when the enzyme had been activated by diacylglycerol indicating that PKC inhibition under physiological conditions might contribute to the overall cytotoxicity of these compounds. Third, a lower level of correlation was established between competition for ER binding and cytotoxicity. Taken together, the results suggest that MCF7 cells might be most sensitive to a cytotoxic effect of TPEs (via PKC and other targets) when they at the same time decrease estrogen-stimulated proliferation via an ER-mediated antiestrogenic effect. Topics: Animals; Binding, Competitive; Breast Neoplasms; Calcium; Cattle; Cell Death; Cell Division; Cytosol; Estradiol; Estrogen Antagonists; Female; Humans; Multivariate Analysis; Phosphatidylserines; Protein Kinase C; Receptors, Estrogen; Stilbenes; Styrenes; Tumor Cells, Cultured | 1993 |
Influence of di- and tri-phenylethylene estrogen/antiestrogen structure on the mechanisms of protein kinase C inhibition and activation as revealed by a multivariate analysis.
We have performed a systematic study of the interaction of 36 di- and tri-phenylethylene derivatives (DPEs and TPEs) with protein kinase C (PKC). The results were submitted to a multivariate analysis in order to identify the structural features that might be implicated in interference with the activity of three PKC subspecies under three enzyme activation conditions. Four groups of test-compounds, each with common chemical features, could be distinguished clearly. The first group comprised all TPEs substituted with at least one basic dialkylaminoethoxy side-chain. These inhibited type alpha, beta and gamma PKC subspecies activated by Ca2+ and phosphatidylserine (PS) with or without diolein (DO) at micromolar concentrations but did not inhibit protamine sulfate phosphorylation. The other effectors, which all possessed a 1,1-bis-(p-hydroxyphenyl) ethylene moiety, influenced PKC activity at high concentrations (30-200 microM) and could be divided into two groups. One group constituted PKC inhibitors in the TPE series and inhibited PKC activated by Ca2+, PS and DO, as well as protamine sulfate phosphorylation. The other group constituted dual-type inhibitors/activators in the DPE series and stimulated PKC in the presence of Ca2+ and low PS concentrations but inhibited the enzyme in the simultaneous presence of DO. The fourth group of compounds was inactive and had, for the most part, one or two substituents with weak steric hindrance. In agreement with previous data for six lead compounds, this study suggests that, in these chemical series, a basic amino side-chain leads to interaction with phospholipid and the regulatory domain of PKC, whereas a 1,1-bis-(p-hydroxyphenyl) ethylene moiety leads to interaction with the catalytic domain of the enzyme. Topics: Animals; Binding Sites; Enzyme Activation; Estrogen Antagonists; Models, Molecular; Multivariate Analysis; Protein Kinase C; Rats; Stilbenes; Structure-Activity Relationship; Styrenes | 1991 |