stigmasterol has been researched along with cycloartenol* in 7 studies
1 review(s) available for stigmasterol and cycloartenol
Article | Year |
---|---|
Enzymology of phytosterol transformations.
Topics: Kinetics; Microsomes; Models, Biological; Phytosterols; Plant Proteins; S-Adenosylmethionine; Stigmasterol; Time Factors; Transferases; Triterpenes | 1999 |
6 other study(ies) available for stigmasterol and cycloartenol
Article | Year |
---|---|
Phytosterols and triterpenes from Morinda lucida Benth. exhibit binding tendency against class I HDAC and HDAC7 isoforms.
The important role of histone deacetylases (HDACs) in the development of cancer has been demonstrated by various studies. Thus targeting HDACs with inhibitors is a major focus in anticancer drug research. Although few synthetic HDAC inhibitors (HDIs) have been approved for cancer treatment, they have significant undesirable side effects. Therefore emphases have been placed on natural HDIs as substitutes for the synthetic ones. In a bid to identify more HDIs, this study evaluated the binding tendency of compounds derived from Morinda lucida Benth. towards selected HDACs for the discovery of potent HDIs as potential candidates for anticancer therapeutics, based on the report of anticancer potentials of Morinda lucida-derived extracts and compounds. Givinostat and 49 Morinda-lucida derived compounds were docked against selected HDAC isoforms using AutodockVina, while binding interactions were viewed with Discovery Studio Visualizer, BIOVIA, 2016. Druglikeness and Absorption-Distribution-Metabolism-Excretion (ADME) parameters of the top 7 compounds were evaluated using the Swiss online ADME web tool. The results revealed that out of the 49 compounds, 3 phytosterols (campesterol, cycloartenol, and stigmasterol) and 2 triterpenes (oleanolic acid and ursolic acid) exhibited high HDAC inhibitory activity compared to givinostat. These 5 compounds also fulfill oral drugability of Lipinski rule of five. Morinda lucida-derived phytosterols and triterpenes show high binding tendency towards the selected HDACs and exhibited good drugability characteristics and are therefore good candidates for further studies in the search for therapies against abnormalities linked with over-activity of HDACs. Topics: Cholesterol; Histone Deacetylase Inhibitors; Histone Deacetylases; Humans; Molecular Docking Simulation; Morinda; Oleanolic Acid; Phytosterols; Plant Extracts; Plant Leaves; Protein Isoforms; Stigmasterol; Triterpenes; Ursolic Acid | 2019 |
Sterol partitioning by HMGR and DXR for routing intermediates toward withanolide biosynthesis.
Withanolides biosynthesis in the plant Withania somnifera (L.) Dunal is hypothesized to be diverged from sterol pathway at the level of 24-methylene cholesterol. The conversion and translocation of intermediates for sterols and withanolides are yet to be characterized in this plant. To understand the influence of mevalonate (MVA) and 2-C-methyl-d-erythritol-4-phosphate (MEP) pathways on sterols and withanolides biosynthesis in planta, we overexpressed the WsHMGR2 and WsDXR2 in tobacco, analyzed the effect of transient suppression through RNAi, inhibited MVA and MEP pathways and fed the leaf tissue with different sterols. Overexpression of WsHMGR2 increased cycloartenol, sitosterol, stigmasterol and campesterol compared to WsDXR2 transgene lines. Increase in cholesterol was, however, marginally higher in WsDXR2 transgenic lines. This was further validated through transient suppression analysis, and pathway inhibition where cholesterol reduction was found higher due to WsDXR2 suppression and all other sterols were affected predominantly by WsHMGR2 suppression in leaf. The transcript abundance and enzyme analysis data also correlate with sterol accumulation. Cholesterol feeding did not increase the withanolide content compared to cycloartenol, sitosterol, stigmasterol and campesterol. Hence, a preferential translocation of carbon from MVA and MEP pathways was found differentiating the sterols types. Overall results suggested that MVA pathway was predominant in contributing intermediates for withanolides synthesis mainly through the campesterol/stigmasterol route in planta. Topics: Base Sequence; Biosynthetic Pathways; Carbon; Cholesterol; Erythritol; Gene Expression; Gene Expression Regulation, Plant; Mevalonic Acid; Molecular Sequence Data; Nicotiana; Phylogeny; Phytosterols; Plant Leaves; Plant Proteins; Plants, Genetically Modified; Sequence Analysis, DNA; Sitosterols; Sterols; Stigmasterol; Sugar Phosphates; Triterpenes; Withania; Withanolides | 2014 |
Quantitative analysis of phytosterols in edible oils using APCI liquid chromatography-tandem mass spectrometry.
Previous methods for the quantitative analysis of phytosterols have usually used GC-MS and require elaborate sample preparation including chemical derivatization. Other common methods such as HPLC with absorbance detection do not provide information regarding the identity of the analytes. To address the need for an assay that utilizes mass selectivity while avoiding derivatization, a quantitative method based on LC-tandem mass spectrometry (LC-MS-MS) was developed and validated for the measurement of six abundant dietary phytosterols and structurally related triterpene alcohols including brassicasterol, campesterol, cycloartenol, β-sitosterol, stigmasterol, and lupeol in edible oils. Samples were saponified, extracted with hexane and then analyzed using reversed phase HPLC with positive ion atmospheric pressure chemical ionization tandem mass spectrometry and selected reaction monitoring. The utility of the LC-MS-MS method was demonstrated by analyzing 14 edible oils. All six compounds were present in at least some of the edible oils. The most abundant phytosterol in all samples was β-sitosterol, which was highest in corn oil at 4.35 ± 0.03 mg/g, followed by campesterol in canola oil at 1.84 ± 0.01 mg/g. The new LC-MS-MS method for the quantitative analysis of phytosterols provides a combination of speed, selectivity and sensitivity that exceed those of previous assays. Topics: Cholestadienols; Cholesterol; Chromatography, Liquid; Molecular Structure; Pentacyclic Triterpenes; Phytosterols; Plant Oils; Reproducibility of Results; Sitosterols; Stigmasterol; Tandem Mass Spectrometry; Triterpenes | 2013 |
Phytosterols accumulation in the seeds of Linum usitatissimum L.
A comparative study was performed to determine the free sterols content and composition during the development of three varieties of linseed (H52, O116 and P129). Seed samples were collected at regular intervals from 7 to 60 days after flowering (DAF). Ten compounds were identified: cholesterol, campesterol, brassicasterol, stigmasterol, beta-sitosterol, Delta5-avenasterol, cycloartenol; 24-methylene cycloartanol, obtusifoliol, citrostadienol. The maximum level of 4-desmethylsterols (1,515 mg/100g oil) was reached at 7 DAF in P129 variety. H52 had the highest level of 4-4 dimethylsterols (355 mg/100g oil) at 28 DAF. The greatest amount of 4-monomethylsterols (35 mg/100g oil) was detected in H52 at 14 DAF. During linseed development, beta sitosterol (830 mg/100g oil) was the major 4-desmethylsterols, followed by campesterol (564 mg/100g oil) and stigmasterol (265 mg/100g oil). Some of these compounds followed nearly the same accumulation pattern during linseed maturation. Topics: Cholestadienols; Cholesterol; Chromatography, Thin Layer; Flax; Flowers; Gas Chromatography-Mass Spectrometry; Phytosterols; Seeds; Sitosterols; Species Specificity; Stigmasterol; Time Factors; Triterpenes | 2009 |
[Study on chemical constituents in rhizome of Pinellia ternata].
To study the chemical constituents in rhizome of Pinellia ternata.. The constituents were isolated by silica-gel and Sephadex LH-20 chromatography. The structures were identified by spectroscopic analysis including 2D NMR techniques.. Six compounds were obtained and identified as stigmast-4-en-3-one(I), cycloartenol(II), 5alpha,8alpha-epidioxyergosta-6,22-dien-3-ol(III), beta-sitosterol-3-O-beta-D-glucoside-6'-eicosanate(IV), alpha-monpalmitin(V), beta-sitosterol(VI). The bioactive assay indicated that: compound III was active against the human tumor cell lines HCT-8, Bel-7402, BGC-823, A549, A2780.. Compounds I-IV were isolated from Pinellia ternata for the first time, compound II was the first triterpene isolated from this genus. Compound III may be one of the antitumor constituents of P. ternata. Topics: Antineoplastic Agents, Phytogenic; Cell Line, Tumor; Cell Proliferation; Ergosterol; Humans; Phytosterols; Pinellia; Plants, Medicinal; Rhizome; Stigmasterol; Triterpenes | 2005 |
Sterol C-24 methyltransferase type 1 controls the flux of carbon into sterol biosynthesis in tobacco seed.
The first committed step in the conversion of cycloartenol into Delta(5) C24-alkyl sterols in plants is catalyzed by an S-adenosyl-methionine-dependent sterol-C24-methyltransferase type 1 (SMT1). We report the consequences of overexpressing SMT1 in tobacco (Nicotiana tabacum), under control of either the constitutive carnation etched ring virus promoter or the seed-specific Brassica napus acyl-carrier protein promoter, on sterol biosynthesis in seed tissue. Overexpression of SMT1 with either promoter increased the amount of total sterols in seed tissue by up to 44%. The sterol composition was also perturbed with levels of sitosterol increased by up to 50% and levels of isofucosterol and campesterol increased by up to 80%, whereas levels of cycloartenol and cholesterol were decreased by up to 53% and 34%, respectively. Concomitant with the enhanced SMT1 activity was an increase in endogenous 3-hydroxy-3-methylglutaryl coenzyme A reductase activity, from which one can speculate that reduced levels of cycloartenol feed back to up-regulate 3-hydroxy-3-methylglutaryl coenzyme A reductase activity and thereby control the carbon flux into sterol biosynthesis. This potential regulatory role of SMT1 in seed sterol biosynthesis is discussed. Topics: Biological Transport; Carbon; Cholesterol; Cloning, Molecular; Gene Expression Regulation, Enzymologic; Gene Expression Regulation, Plant; Hydroxymethylglutaryl CoA Reductases; Methyltransferases; Nicotiana; Phytosterols; Plant Leaves; Plants, Genetically Modified; Seeds; Sitosterols; Stigmasterol; Triterpenes | 2002 |