stigmasterol and campesterol

stigmasterol has been researched along with campesterol* in 95 studies

Reviews

2 review(s) available for stigmasterol and campesterol

ArticleYear
Oxysterols formation: A review of a multifactorial process.
    The Journal of steroid biochemistry and molecular biology, 2017, Volume: 169

    Dietary sterols are nutritionally interesting compounds which can suffer oxidation reactions. In the case of plant sterols, they are being widely used for food enrichment due to their hypocholesterolemic properties. Besides, cholesterol and plant sterols oxidation products are associated with the development of cardiovascular and neurodegenerative diseases, among others. Therefore, the evaluation of the particular factors affecting sterol degradation and oxysterols formation in foods is of major importance. The present work summarizes the main results obtained in experiments which aimed to study four aspects in this context: the effect of the heating treatment, the unsaturation degree of the surrounding lipids, the presence of antioxidants on sterols degradation, and at last, oxides formation. The use of model systems allowed the isolation of some of these effects resulting in more accurate data. Thus, these results could be applied in real conditions.

    Topics: Animals; Antioxidants; Cholesterol; Hot Temperature; Humans; Kinetics; Models, Theoretical; Oxygen; Oxysterols; Phytosterols; Sitosterols; Stigmasterol

2017
Bioactivity of Phytosterols and Their Production in Plant in Vitro Cultures.
    Journal of agricultural and food chemistry, 2016, Sep-28, Volume: 64, Issue:38

    Phytosterols are a kind of plant metabolite belonging to the triterpene family. These compounds are essential biomolecules for human health, and so they must be taken from foods. β-Sitosterol, campesterol, and stigmasterol are the main phytosterols found in plants. Phytosterols have beneficial effects on human health since they are able to reduce plasma cholesterol levels and have antiinflammatory, antidiabetic, and anticancer activities. However, there are many difficulties in obtaining them, since the levels of these compounds produced from plant raw materials are low and their chemical synthesis is not economically profitable for commercial exploitation. A biotechnological alternative for their production is the use of plant cell and hairy root cultures. This review is focused on the biosynthesis of phytosterols and their function in both plants and humans as well as the different biotechnological strategies to increase phytosterol biosynthesis. Special attention is given to describing new methodologies based on the use of recombinant DNA technology to increase the levels of phytosterols.

    Topics: Anti-Inflammatory Agents; Antineoplastic Agents; Biological Availability; Biotechnology; Cholesterol; Empirical Research; Humans; Hypoglycemic Agents; Phytosterols; Plant Cells; Plants; Sitosterols; Stigmasterol

2016

Trials

5 trial(s) available for stigmasterol and campesterol

ArticleYear
Increases in plasma plant sterols stabilize within four weeks of plant sterol intake and are independent of cholesterol metabolism.
    Nutrition, metabolism, and cardiovascular diseases : NMCD, 2016, Volume: 26, Issue:4

    Plant sterols (PS) lower plasma LDL-cholesterol through partial inhibition of intestinal cholesterol absorption. Although PS themselves are poorly absorbed, increased intakes of PS result in elevated plasma concentrations. In this paper, we report time curves of changes in plasma PS during 12 weeks of PS intake. Furthermore, the impact of cholesterol synthesis and absorption on changes in plasma PS is explored.. The study was a double-blind, randomized, placebo-controlled, parallel-group study with the main aim to investigate the effects of PS on vascular function (clinicaltrials.gov: NCT01803178). Hypercholesterolemic but otherwise healthy men and women (n = 240) consumed low-fat spreads without or with added PS (3 g/d) for 12 weeks after a 4-week run-in period. Blood sampling was performed at week 0, 4, 8 and 12. Basal cholesterol-standardized concentrations of lathosterol and sitosterol + campesterol were used as markers of cholesterol synthesis and absorption, respectively. In the PS group, plasma sitosterol and campesterol concentrations increased within the first 4 weeks of intervention by 69% (95%CI: 58; 82) starting at 7.2 μmol/L and by 28% (95%CI: 19; 39) starting at 11.4 μmol/L, respectively, and remained stable during the following 8 weeks. Placebo-corrected increases in plasma PS were not significantly different between high and low cholesterol synthesizers (P-values >0.05). Between high and low cholesterol absorbers, no significant differences were observed, except for the cholesterol-standardized sum of four major plasma PS (sitosterol, campesterol, brassicasterol and stigmasterol) showing larger increases in low absorbers (78.3% (95%CI: 51.7; 109.5)) compared to high absorbers (40.8% (95%CI: 19.9; 65.5)).. Increases in plasma PS stabilize within 4 weeks of PS intake and do not seem impacted by basal cholesterol synthesis or absorption efficiency. This study was registered at clinicaltrials.gov (NCT01803178).

    Topics: Adult; Aged; Cholestadienols; Cholesterol; Cholesterol, LDL; Double-Blind Method; Female; Humans; Hypercholesterolemia; Intestinal Absorption; Lipid Metabolism; Male; Middle Aged; Phytosterols; Prospective Studies; Sitosterols; Stigmasterol

2016
Cholesterol lowering and inhibition of sterol absorption by Lactobacillus reuteri NCIMB 30242: a randomized controlled trial.
    European journal of clinical nutrition, 2012, Volume: 66, Issue:11

    The percentage of hypercholesterolemic individuals not reaching their LDL-cholesterol (LDL-C) goal remains high and additional therapeutic strategies should be evaluated. The objective of this study was to evaluate the cholesterol-lowering efficacy and mechanism of action of bile salt hydrolase-active Lactobacillus reuteri NCIMB 30242 capsules in hypercholesterolemic adults.. A total of 127 subjects completed a randomized, double-blind, placebo-controlled, parallel-arm, multicenter study. Subjects were randomized to consume L. reuteri NCIMB 30242 capsules or placebo capsules over a 9-week intervention period. The primary outcome was LDL-C relative to placebo at the study end point.. L. reuteri NCIMB 30242 capsules reduced LDL-C by 11.64% (P<0.001), total cholesterol by 9.14%, (P<0.001), non-HDL-cholesterol (non-HDL-C) by 11.30% (P < 0.001) and apoB-100 by 8.41% (P = 0.002) relative to placebo. The ratios of LDL-C/HDL-cholesterol (HDL-C) and apoB-100/apoA-1 were reduced by 13.39% (P = 0.006) and 9.00% (P = 0.026), respectively, relative to placebo. Triglycerides and HDL-C were unchanged. High-sensitivity C-reactive protein and fibrinogen were reduced by 1.05 mg/l (P = 0.005) and 14.25% (P = 0.004) relative to placebo, respectively. Mean plasma deconjugated bile acids were increased by 1.00 nmol/l (P=0.025) relative to placebo, whereas plasma campesterol, sitosterol and stigmasterol were decreased by 41.5%, 34.2% and 40.7%, respectively.. The present results suggest that the deconjugation of intraluminal bile acids results in reduced absorption of non-cholesterol sterols and indicate that L. reuteri NCIMB 30242 capsules may be useful as an adjunctive therapy for treating hypercholesterolemia.

    Topics: Adult; Apolipoprotein A-I; Apolipoprotein B-100; Bile Acids and Salts; C-Reactive Protein; Cholesterol; Cholesterol, HDL; Cholesterol, LDL; Double-Blind Method; Female; Fibrinogen; Humans; Hypercholesterolemia; Intestinal Absorption; Limosilactobacillus reuteri; Male; Middle Aged; Phytosterols; Sitosterols; Stigmasterol

2012
Effects of long-term plant sterol or stanol ester consumption on lipid and lipoprotein metabolism in subjects on statin treatment.
    The British journal of nutrition, 2008, Volume: 100, Issue:5

    Consumption of plant sterol- or stanol-enriched margarines by statin users results in an additional LDL-cholesterol reduction of approximately 10 %, which may be larger than the average decrease of 3-7 % achieved by doubling the statin dose. However, whether this effect persists in the long term is not known. Therefore, we examined in patients already on stable statin treatment the effects of 85 weeks of plant sterol and stanol ester consumption on the serum lipoprotein profile, cholesterol metabolism, and bile acid synthesis. For this, a double-blind randomised trial was designed in which fifty-four patients consumed a control margarine with no added plant sterols or stanols for 5 weeks (run-in period). For the next 85 weeks, seventeen subjects continued with the control margarine and the other two groups with either a plant sterol (n 18) or plant stanol (n 19) (2.5 g/d each) ester-enriched margarine. Blood was sampled at the end of the run-in period and every 20 weeks during the intervention period. Compared with the control group, plant sterol and stanol ester consumption reduced LDL-cholesterol by 0.28 mmol/l (or 8.7 %; P = 0.08) and 0.42 mmol/l (13.1 %; P = 0.006) respectively after 85 weeks. No effects were found on plasma concentrations of oxysterols or 7 alpha-hydroxy-4-cholesten-3-one, a bile acid synthesis marker. We conclude that long-term consumption of both plant sterol and stanol esters effectively lowered LDL-cholesterol concentrations in statin users.

    Topics: Analysis of Variance; Anticholesteremic Agents; Biomarkers; Cholestenones; Cholesterol; Cholesterol, LDL; Double-Blind Method; Esters; Female; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Hypercholesterolemia; Lipid Metabolism; Lipoproteins; Male; Margarine; Middle Aged; Phytosterols; Sitosterols; Stigmasterol

2008
Plant sterol-fortified orange juice effectively lowers cholesterol levels in mildly hypercholesterolemic healthy individuals.
    Arteriosclerosis, thrombosis, and vascular biology, 2004, Volume: 24, Issue:3

    Hypercholesterolemia is a major risk factor for coronary artery disease. Therapeutic lifestyle changes include dietary modifications such as inclusion of phytosterols, which effectively lowers low-density lipoprotein (LDL) cholesterol in margarines and other fats. Their effectiveness in nonfat moieties is not yet established. The aim of this study was to examine if phytosterols alter the plasma lipoprotein profile when incorporated into nonfat orange juice.. After a 2-week run-in phase with orange juice, 72 mildly hypercholesterolemic healthy subjects were randomized to receive either placebo orange juice (placebo OJ) or plant sterol-fortified orange juice (sterol OJ) (2g/d) for 8 weeks. Fasting blood was obtained at baseline, after 2 weeks of OJ, and after 8 weeks of placebo/sterol-OJ supplementation. Sterol OJ supplementation significantly decreased total (7.2%), LDL (12.4%), and non-high-density lipoprotein (HDL) cholesterol (7.8%) compared with baseline and compared with placebo OJ (P<0.01). Apolipoprotein B levels were significantly decreased (9.5%) with sterol OJ. There were no significant changes in HDL cholesterol or triglycerides with the sterol OJ. While folate and B12 levels significantly increased, homocysteine levels were unchanged.. Orange juice fortified with plant sterols are effective in reducing LDL cholesterol and could easily be incorporated into the therapeutic lifestyle changes dietary regimen.

    Topics: Adult; Aged; Apolipoproteins B; Beverages; Cholesterol; Cholesterol, LDL; Citrus; Double-Blind Method; Female; Folic Acid; Food, Fortified; Homocysteine; Humans; Hypercholesterolemia; Male; Middle Aged; Phytosterols; Sitosterols; Stigmasterol; Treatment Outcome; Vitamin B 12

2004
Effects of plant stanol esters supplied in low-fat yoghurt on serum lipids and lipoproteins, non-cholesterol sterols and fat soluble antioxidant concentrations.
    Atherosclerosis, 2002, Volume: 160, Issue:1

    Oil-based products enriched with plant stanol esters can lower low-density lipoprotein (LDL) cholesterol concentrations by 10-14%. Effectiveness of low-fat products, however, has never been evaluated, although such products fit into a healthy diet. We therefore examined the effects of plant stanol esters emulsified into low-fat yoghurt (0.7% fat) on fasting concentrations of plasma lipids and lipid-soluble antioxidants, which may also change by plant stanol consumption. Sixty non-hypercholesterolemic subjects first consumed daily three cups (3 x 150 ml) of placebo yoghurt for 3 weeks. For the next 4 weeks, 30 subjects continued with the placebo yoghurt, while the other 30 subjects received three cups of experimental yoghurt. Each cup provided 1 g of plant stanols (0.71 g sitostanol plus 0.29 g campestanol) as its fatty acid ester. LDL cholesterol (mean+/-S.D.) increased by 0.06+/-0.21 mmol/l in the placebo group, but decreased by -0.34+/-0.30 mmol/l in the experimental group. The difference in changes between the two groups of 0.40 mmol or 13.7% was highly significant (P<0.001; 95% confidence interval for the difference, (-)0.26 -(-)0.53 mmol/l). Effects were already maximal after 1 week. HDL cholesterol and triacylglycerol concentrations did not change. Total tocopherol levels increased by 1.43 micromol/mmol LDL cholesterol (14.0%, P=0.015). beta-carotene levels, however, decreased by -0.02 micromol/mmol LDL cholesterol (-14.4%, P=0.038). Decreases in absolute beta-carotene concentrations were found in all apoB-containing lipoproteins. LDL-cholesterol standardised phytofluene levels decreased by 21.4+/-25.7% (P<0.001), while other plasma carotenoid (lutein/zeaxanthin, beta-cryptoxanthin, lycopene and alpha-carotene) levels did not change significantly. We conclude that low-fat yoghurt enriched with plant stanol esters lowers within 1 week LDL cholesterol to the same extent as oil-based products. LDL-cholesterol standardised concentrations of tocopherol increased. The observed decrease in beta-carotene levels, as found in many other studies, appears not to be limited to the LDL fraction.

    Topics: Adolescent; Adult; Aged; Antioxidants; Body Weight; Cholesterol; Diet, Fat-Restricted; Double-Blind Method; Female; Humans; Intestinal Mucosa; Lipids; Lipoproteins; Male; Middle Aged; Netherlands; Phytosterols; Plants; Sitosterols; Solubility; Stigmasterol; Yogurt

2002

Other Studies

88 other study(ies) available for stigmasterol and campesterol

ArticleYear
Characterization of seven sterols in five different types of cattle feedstuffs.
    Food chemistry, 2021, Mar-15, Volume: 340

    This paper provides a method for the quantification of sterols in different types of calf feedstuffs based on soy, sunflower, hay, calf feed and a mixture of all of them. The free fraction and the total sterolic fraction, after saponification and acidic hydrolysis of the samples, are extracted by solvent and the sterols are identified/quantified by reversed phase HPLC coupled to tandem mass spectrometry by atmospheric pressure chemical ionization. After the recovery evaluation, the method is validated in terms of linearity (coefficient of determination R

    Topics: Animal Feed; Animals; Atmospheric Pressure; Cattle; Cholesterol; Chromatography, High Pressure Liquid; Ergosterol; Glycine max; Helianthus; Phytosterols; Sitosterols; Stigmasterol; Tandem Mass Spectrometry

2021
Yield, Characterization, and Possible Exploitation of
    Molecules (Basel, Switzerland), 2021, Aug-12, Volume: 26, Issue:16

    Topics: Cannabis; Cholesterol; Hydroponics; Oleanolic Acid; Phytosterols; Plant Extracts; Plant Roots; Sitosterols; Stigmasterol; Triterpenes

2021
The simultaneous quantification of phytosterols and tocopherols in liposomal formulations using validated atmospheric pressure chemical ionization- liquid chromatography -tandem mass spectrometry.
    Journal of pharmaceutical and biomedical analysis, 2020, May-10, Volume: 183

    A novel liquid chromatography tandem mass spectrometry (LC-MS/MS) method was developed and validated to simultaneously quantify phytosterols (brassicasterol, campesterol, stigmasterol and β-sitosterol) and tocopherols (alpha, beta, gamma and delta) entrapped in the lipid bilayer of a liposomal formulation. Apart from liposomes (a pharmaceutical product), the developed method was able to quantify target analytes in agricultural products, thus showing wide applications. Atmospheric pressure chemical ionization (APCI) was employed due to the enhanced ionization of phytosterols and tocopherols in comparison to electrospray ionization. Unlike published work, the chromatographic conditions were modified to simplify the analytical approach. For the first time, a simple isocratic elution (acetonitrile:methanol 99:1 v/v) was utilized for the separation of four phytosterols and four tocopherols in a single run. A substantially better baseline separation of phytosterols were obtained in comparison to reported methods by using poroshell C18 column. The method has a total run time of 7 min, which is the shortest run time among all reported quantitative methods for the simultaneous determination of four phytosterols and four tocopherols. Calibration curves for all phytosterols were linear in the range of 0.05-10 μg/mL. In the case of tocopherols, alpha tocopherol showed linear response in the range of 0.25-10 μg/mL. However, gamma and delta tocopherols exhibited quadratic relationship in the same concentration range (0.25-10 μg/mL). Validation parameters met the International Conference on Harmonization (ICH) guidelines in terms of selectivity, accuracy, precision, repeatability, sensitivity, matrix effects, dilution integrity and stability. The method was, for the first time, successfully applied for the quantifying phytosterols and tocopherols entrapped inside liposomes. An interesting chromatographic phenomenon was observed during sample analysis. Alpha tocopherol (entrapped in the liposomal lipid bilayer) was found to elute at two retention times, 2.53 min and 3.60 min. Such dual separation was not observed in calibration standards and quality controls. It was concluded that the chiral recognition ability of liposomes made up of phosphatidylcholine separated the enantiomers of alpha tocopherol, giving rise to two peaks at two different retention time. To sum, the reported novel LC-MS/MS method addresses three major analytical shortcomings, namely i)longer run time,

    Topics: Atmospheric Pressure; Calibration; Cholestadienols; Cholesterol; Chromatography, High Pressure Liquid; Chromatography, Liquid; Liposomes; Phytosterols; Reproducibility of Results; Sitosterols; Spectrometry, Mass, Electrospray Ionization; Stigmasterol; Tandem Mass Spectrometry; Tocopherols

2020
Phytosterolaemia associated with parenteral nutrition administration in adult patients.
    The British journal of nutrition, 2020, 06-28, Volume: 123, Issue:12

    Vegetable lipid emulsions (LE) contain non-declared phytosterols (PS). We aimed to determine PS content depending on the brand and LE batch, and in adult hospitalised patients treated with parenteral nutrition (PN), to establish the association between plasma and administered PS. Part I was the LE study: totals and fractions of PS in three to four non-consecutive batches from six LE were analysed. Part II was the patient study: patients with at least 7 previous days of PN with 0·8 g/kg per d of an olive/soyabean (O/S) LE were randomised (day 0) 1:1 to O/S or 100 % fish oil (FO) at a dose of 0·4 g/kg per d for 7 d (day 7). Plasma PS, its fractions, total cholesterol on days 0 and 7, their clearance and their association with PS administered by LE were studied. In part I, LE study: differences were found in the total PS, their fractions and cholesterol among different LE brands and batches. Exclusive soyabean LE had the highest content of PS (422·36 (sd 130·46) μg/ml). In part II, patient study: nineteen patients were included. In the O/S group, PS levels were maintained (1·11 (sd 6·98) μg/ml) from day 0 to 7, while in the FO group, significant decreases were seen in total PS (-6·21 (sd 4·73) μg/ml) and their fractions, except for campesterol and stigmasterol. Plasma PS on day 7 were significantly associated with PS administered (R2 0·443). PS content in different LE brands had great variability. PS administered during PN resulted in accumulation and could be prevented with the exclusive administration of FO LE.

    Topics: Adult; Cholesterol; Fat Emulsions, Intravenous; Female; Fish Oils; Humans; Hypercholesterolemia; Inpatients; Intestinal Diseases; Lipid Metabolism, Inborn Errors; Male; Parenteral Nutrition; Parenteral Nutrition Solutions; Phytosterols; Plant Oils; Prospective Studies; Stigmasterol; Vegetables

2020
One-step rapid extraction of phytosterols from vegetable oils.
    Food research international (Ottawa, Ont.), 2020, Volume: 130

    Topics: Cholesterol; Chromatography, Gas; Food Handling; Phytosterols; Plant Oils; Sitosterols; Stigmasterol; Temperature; Time Factors

2020
Biosorption of sterols from tobacco waste extract using living and dead of newly isolated fungus
    Bioscience, biotechnology, and biochemistry, 2020, Volume: 84, Issue:7

    Sterols are verified to be able to produce polycyclic aromatic hydrocarbons during its pyrolysis. In this study, a kind of

    Topics: Absorption, Physiological; Aspergillus fumigatus; Biodegradation, Environmental; Biomass; Cholesterol; Ergosterol; Hydrogen-Ion Concentration; Microscopy, Electron, Scanning; Nicotiana; Phytosterols; Plant Extracts; Plant Leaves; Sitosterols; Spectroscopy, Fourier Transform Infrared; Stigmasterol; Water Pollutants, Chemical

2020
Nutritional Component and Chemical Characterization of Chinese Highland Barley Bran Oil.
    Journal of oleo science, 2020, Nov-01, Volume: 69, Issue:11

    The nutritional composition and chemical properties of the Chinese highland barley bran oil were characterized in this study. The barley bran oil extracted with solvent possessed relatively high acid value and peroxide value, indicating that the oil should be further refined before using. The fatty acid composition of the oil showed that the content of unsaturated fatty acids was 80.12 g/100 g, in which the content of polyunsaturated fatty acids was as high as 60.41 g/100 g. The overall triacylglycerol profile showed that the oil contained 27 TAGs including 21 regioisomers. Major TAGs included LLL (21.08 g/100 g), PLL (19.27 g/100 g), LLO (12.24 g/100 g), and LLLn (12.17 g/100 g). The total unsaponifiable matter of the oil reached up to 10.74 g/100 g oil. The total phytosterol content reached 7.90 g/100 g oil, in which β-sitosterol was the most predominant, with the content of 5.69 g/100 g oil. Other important sterols included campesterol (1.32 g/100 g oil), lanosterol (0.70 g/100 g oil) and stigmasterol (0.19 g/100 g oil).

    Topics: China; Cholesterol; Fatty Acids, Unsaturated; Hordeum; Lanosterol; Nutrients; Phytosterols; Plant Oils; Sitosterols; Stigmasterol; Triglycerides

2020
Neurite Outgrowth-Promoting Activity of Compounds in PC12 Cells from Sunflower Seeds.
    Molecules (Basel, Switzerland), 2020, Oct-16, Volume: 25, Issue:20

    In the current super-aging society, the establishment of methods for prevention and treatment of Alzheimer's disease (AD) is an urgent task. One of the causes of AD is thought to be a decrease in the revel of nerve growth factor (NGF) in the brain. Compounds showing NGF-mimicking activity and NGF-enhancing activity have been examined as possible agents for improving symptoms. In the present study, sunflower seed extract was found to have neurite outgrowth-promoting activity, which is an NGF-enhancing activity, in PC12 cells. To investigate neurite outgrowth-promoting compounds from sunflower seed extract, bioassay-guided purification was carried out. The purified active fraction was obtained by liquid-liquid partition followed by some column chromatographies. Proton nuclear magnetic resonance and gas chromatography-mass spectrometry analyses of the purified active fraction indicated that the fraction was a mixture of β-sitosterol, stigmasterol and campesterol, with β-sitosterol being the main component. Neurite outgrowth-promoting activities of β-sitosterol, stigmasterol, campesterol and cholesterol were evaluated in PC12 cells. β-Sitosterol and stigmasterol showed the strongest activity of the four sterol compounds (β-sitosterol ≈ stigmasterol > campesterol > cholesterol), and cholesterol did not show any activity. The results indicated that β-sitosterol was the major component responsible for the neurite outgrowth-promoting activity of sunflower seeds. Results of immunostaining also showed that promotion by β-sitosterol of neurite formation induced by NGF was accompanied by neurofilament expression. β-Sitosterol, which showed NGF-enhancing activity, might be a candidate ingredient in food for prevention of AD.

    Topics: Alzheimer Disease; Animals; Brain; Cholesterol; Gene Expression Regulation; Helianthus; Humans; Nerve Growth Factor; Neurites; Neuronal Outgrowth; PC12 Cells; Phytosterols; Plant Extracts; Rats; Seeds; Sitosterols; Stigmasterol

2020
Phytosterols in supplements containing
    Natural product research, 2019, Volume: 33, Issue:15

    Topics: Cholesterol; Chromatography, Gas; Dietary Supplements; Phytosterols; Serenoa; Sitosterols; Stigmasterol

2019
Phytosterols and triterpenes from Morinda lucida Benth. exhibit binding tendency against class I HDAC and HDAC7 isoforms.
    Molecular biology reports, 2019, Volume: 46, Issue:2

    The important role of histone deacetylases (HDACs) in the development of cancer has been demonstrated by various studies. Thus targeting HDACs with inhibitors is a major focus in anticancer drug research. Although few synthetic HDAC inhibitors (HDIs) have been approved for cancer treatment, they have significant undesirable side effects. Therefore emphases have been placed on natural HDIs as substitutes for the synthetic ones. In a bid to identify more HDIs, this study evaluated the binding tendency of compounds derived from Morinda lucida Benth. towards selected HDACs for the discovery of potent HDIs as potential candidates for anticancer therapeutics, based on the report of anticancer potentials of Morinda lucida-derived extracts and compounds. Givinostat and 49 Morinda-lucida derived compounds were docked against selected HDAC isoforms using AutodockVina, while binding interactions were viewed with Discovery Studio Visualizer, BIOVIA, 2016. Druglikeness and Absorption-Distribution-Metabolism-Excretion (ADME) parameters of the top 7 compounds were evaluated using the Swiss online ADME web tool. The results revealed that out of the 49 compounds, 3 phytosterols (campesterol, cycloartenol, and stigmasterol) and 2 triterpenes (oleanolic acid and ursolic acid) exhibited high HDAC inhibitory activity compared to givinostat. These 5 compounds also fulfill oral drugability of Lipinski rule of five. Morinda lucida-derived phytosterols and triterpenes show high binding tendency towards the selected HDACs and exhibited good drugability characteristics and are therefore good candidates for further studies in the search for therapies against abnormalities linked with over-activity of HDACs.

    Topics: Cholesterol; Histone Deacetylase Inhibitors; Histone Deacetylases; Humans; Molecular Docking Simulation; Morinda; Oleanolic Acid; Phytosterols; Plant Extracts; Plant Leaves; Protein Isoforms; Stigmasterol; Triterpenes; Ursolic Acid

2019
Effects of Plant Sterols or β-Cryptoxanthin at Physiological Serum Concentrations on Suicidal Erythrocyte Death.
    Journal of agricultural and food chemistry, 2018, Feb-07, Volume: 66, Issue:5

    The eryptotic and hemolytic effects of a phytosterol (PS) mixture (β-sitosterol, campesterol, stigmasterol) or β-cryptoxanthin (β-Cx) at physiological serum concentration and their effect against oxidative stress induced by tert-butylhydroperoxide (tBOOH) (75 and 300 μM) were evaluated. β-Cryptoxanthin produced an increase in eryptotic cells, cell volume, hemolysis, and glutathione depletion (GSH) without ROS overproduction and intracellular Ca

    Topics: Beta-Cryptoxanthin; Cells, Cultured; Cholesterol; Eryptosis; Erythrocytes; Glutathione; Hemolysis; Humans; Oxidative Stress; Phytosterols; Sitosterols; Stigmasterol; tert-Butylhydroperoxide

2018
Metal ions accelerated phytosterol thermal degradation on Ring A & Ring B of steroid nucleus in oils.
    Food research international (Ottawa, Ont.), 2017, Volume: 100, Issue:Pt 2

    This study aimed to investigate the effect of metal ions on the degradation of phytosterols in oils. The oil was heated at 180°C for 1h with/without addition of Fe

    Topics: Antioxidants; Cholestadienols; Cholesterol; Food Analysis; Food Handling; Gas Chromatography-Mass Spectrometry; Hot Temperature; Nutritive Value; Oils; Phytosterols; Sitosterols; Steroids; Stigmasterol

2017
Parenteral Plant Sterols Accumulate in the Liver Reflecting Their Increased Serum Levels and Portal Inflammation in Children With Intestinal Failure.
    JPEN. Journal of parenteral and enteral nutrition, 2017, Volume: 41, Issue:6

    Parenteral plant sterols (PSs) are considered hepatotoxic; however, liver PSs and their associations with liver injury in patients with intestinal failure (IF) have not been reported.. We analyzed liver and serum PS (avenasterol, campesterol, sitosterol, and stigmasterol) concentrations and ratios to cholesterol and their associations with biochemical and histologic liver damage in children with IF during (n = 7) parenteral nutrition (PN) and after weaning off it (n = 9), including vegetable oil-based lipid emulsions.. Liver avenasterol, sitosterol, and total PS concentrations and cholesterol ratios were 2.4-fold to 5.6-fold higher in PN-dependent patients ( P < .05). Parenteral PS delivery reflected liver avenasterol and sitosterol ratios to cholesterol ( r = 0.83-0.89, P = .02-.04), while serum and liver total PS levels were positively interrelated ( r = 0.98, P < .01). Any liver histopathology was equally common while portal inflammation more frequent (57 vs 0%, P = .02) in PN-dependent patients. All liver PS fractions correlated positively with histologic portal inflammation ( r = 0.53-0.66, P < .05), and their total concentration was significantly ( P = .01) higher among patients with versus without portal inflammation. In PN-dependent patients, liver fibrosis and any histopathology correlated with liver campesterol and stigmasterol levels ( r = 0.79-0.87, P ≤ .03).. Among children with IF, parenteral PSs accumulate in the liver, reflect their increased serum levels, and relate with biochemical liver injury, portal inflammation, and liver fibrosis, thus supporting their role in promoting liver damage.

    Topics: Alanine Transaminase; Aspartate Aminotransferases; Chemical and Drug Induced Liver Injury; Child; Child, Preschool; Cholesterol; Female; gamma-Glutamyltransferase; Humans; Infant; Inflammation; Intestinal Diseases; Liver; Male; Parenteral Nutrition; Phytosterols; Plant Oils; Portal Vein; Sitosterols; Stigmasterol; Triglycerides

2017
Sterols in infant formulas: validation of a gas chromatographic method.
    International journal of food sciences and nutrition, 2017, Volume: 68, Issue:6

    Sterols are components present in the fat fraction of infant formulas (IFs). Their characterization is therefore of interest, though there are no official reference methods for their analysis in these matrices.. To validate a gas chromatographic method with flame ionization detection for the determination of animal (cholesterol and desmosterol) and plant sterols (brassicasterol, campesterol, stigmasterol, β-sitosterol and sitostanol) found in IFs. All correlation coefficients obtained for the calibration curves of sterols studied were >0.99. Limits of detection (<1 μg/100 mL) and quantification (<4 μg/100 mL) are suitable for sterols determination in IFs. The within-assay precision ranged from 1.6% to 8.8%, while the between-assay precision was <10% for most of sterols. Accuracy was satisfactory and was calculated by recovery assays (ranging 93-108%). The analytical parameters obtained showed the suitability of the proposed method for the determination of sterols in IFs.

    Topics: Calibration; Cholestadienols; Cholesterol; Chromatography, Gas; Desmosterol; Flame Ionization; Infant Formula; Limit of Detection; Phytosterols; Reproducibility of Results; Sitosterols; Stigmasterol

2017
Bioaccessibility study of plant sterol-enriched fermented milks.
    Food & function, 2016, Volume: 7, Issue:1

    The bioaccessibility (BA) of total and individual plant sterols (PS) of four commercial PS-enriched fermented milk beverages (designated as A to D) was evaluated using in vitro gastrointestinal digestion including the formation of mixed micelles. The fat content of the samples ranged from 1.1 to 2.2% (w/w), and PS enrichment was between 1.5 and 2.9% (w/w). β-Sitosterol, contained in all samples, was higher in samples A and B (around 80% of total PS). The campesterol content was C (22%) > A (7%) > B (5%). Sitostanol was the most abundant in sample D (85%). Stigmasterol was only present in sample C (33%). The greatest BA percentage for total PS corresponded to samples A and B (16-17%), followed by sample D (11%) and sample C (9%). The total BA was not related to the protein, lipid or PS content of the beverages, whereas samples with higher carbohydrates and fiber contents showed lower BA. The BA of the individual PS differed according to the sample considered, and was not related to the PS profile of the sample, thus indicating strong dependency upon the matrix (PS ingredient and other components). Although in vivo studies should be carried out to better assess the functionality of PS in functional foods such as enriched fermented milk beverages, our in vitro study is a useful preliminary contribution to evaluation of the efficacy of these products.

    Topics: Biological Availability; Cholesterol; Cultured Milk Products; Dietary Carbohydrates; Dietary Fats; Dietary Fiber; Digestion; Food, Fortified; Functional Food; Gastrointestinal Tract; Micelles; Models, Biological; Phytosterols; Sitosterols; Stigmasterol

2016
Unsaturated lipid matrices protect plant sterols from degradation during heating treatment.
    Food chemistry, 2016, Apr-01, Volume: 196

    The interest in plant sterols enriched foods has recently enhanced due to their healthy properties. The influence of the unsaturation degree of different fatty acids methyl esters (FAME: stearate, oleate, linoletate and linolenate) on a mixture of three plant sterols (PS: campesterol, stigmasterol and β-sitosterol) was evaluated at 180 °C for up to 180 min. Sterols degraded slower in the presence of unsaturated FAME. Both PS and FAME degradation fit a first order kinetic model (R(2)>0.9). Maximum oxysterols concentrations were achieved at 20 min in neat PS and 120 min in lipid mixtures and this maximum amount decreased with increasing their unsaturation degree. In conclusion, the presence of FAME delayed PS degradation and postponed oxysterols formation. This protective effect was further promoted by increasing the unsaturation degree of FAME. This evidence could help industries to optimize the formulation of sterol-enriched products, so that they could maintain their healthy properties during cooking or processing.

    Topics: alpha-Linolenic Acid; Cholesterol; Fatty Acids; Food Handling; Hot Temperature; Linoleic Acid; Oleic Acid; Phytosterols; Protective Agents; Sitosterols; Stearates; Stigmasterol

2016
Fractional factorial design-based optimisation and application of an extraction and UPLC-MS/MS detection method for the quantification of phytosterols in food, feed and beverages low in phytosterols.
    Analytical and bioanalytical chemistry, 2016, Volume: 408, Issue:27

    Topics: Cholestadienols; Cholesterol; Chromatography, High Pressure Liquid; Edible Grain; Factor Analysis, Statistical; Fruit and Vegetable Juices; Humans; Limit of Detection; Liquid Phase Microextraction; Phytosterols; Pisum sativum; Poaceae; Reproducibility of Results; Sitosterols; Stigmasterol; Tandem Mass Spectrometry

2016
Simultaneous determination of β-sitosterol, campesterol, and stigmasterol in rat plasma by using LC-APCI-MS/MS: Application in a pharmacokinetic study of a titrated extract of the unsaponifiable fraction of Zea mays L.
    Journal of separation science, 2016, Volume: 39, Issue:21

    Topics: Animals; Cholesterol; Chromatography, High Pressure Liquid; Phytosterols; Rats; Reproducibility of Results; Sitosterols; Stigmasterol; Tandem Mass Spectrometry; Zea mays

2016
Online solid-phase extraction-liquid chromatography-mass spectrometry to determine free sterols in human serum.
    Talanta, 2015, Volume: 132

    An automated method for analyzing free non-cholesterol sterols in human serum using online solid phase extraction-liquid chromatography-mass spectrometry is proposed herein. The method allows the determination of three phytosterols (sitosterol, stigmasterol and campesterol) and two cholesterol precursors (desmosterol and lanosterol). The analysis of sterols in human serum is critical in the study of cholesterol-related disorders, such as inherited familial hypercholesterolemias. Special effort was made to isolate the analytes from the serum lipoproteins, their natural conveyance through the bloodstream. The sample treatment consisted of a Bligh-Dyer extraction followed by dilution of the extract. This treatment allowed the sample to be injected into the online system and ensured the correct detection of the analytes, while avoiding the matrix effects commonly related to serum samples. The analytical performance showed linear ranges that covered two orders of magnitude, with correlation coefficients above 0.99. Limits of detection and quantification ranged from 0.2 ng/mL to 13 ng/mL and from 1.0 ng/mL to 43 ng/mL, respectively. Recovery when spiking serum with a half or a tenth of the average concentration reported in human serum ranged from 99% to 111% and from 102% to 120%, respectively. Intra-day precision and inter-day precision were below 20%.

    Topics: Cholesterol; Chromatography, Liquid; Desmosterol; Humans; Lanosterol; Limit of Detection; Mass Spectrometry; Phytosterols; Sitosterols; Solid Phase Extraction; Stigmasterol

2015
Structures of phytosterols and triterpenoids with potential anti-cancer activity in bran of black non-glutinous rice.
    Nutrients, 2015, Mar-06, Volume: 7, Issue:3

    Structures of some bioactive phytochemicals in bran extract of the black rice cv. Riceberry that had demonstrated anti-cancer activity in leukemic cell line were investigated. After saponification with potassium hydroxide, separation of the unsaponified fraction by reversed-phase high performance liquid chromatography (HPLC) resulted in four sub-fractions that had a certain degree of anti-proliferation against a mouse leukemic cell line (WEHI-3 cell), this being IC50 at 24 h ranging between 2.80-467.11 μg/mL. Further purification of the bioactive substances contained in these four sub-fractions was performed by normal-phase HPLC. Structural characterization by gas chromatography-mass spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance spectroscopy (NMR) resulted in, overall, the structures of seven phytosterols and four triterpenoids. Four phytosterols, 24-methylene-ergosta-5-en-3β-ol, 24-methylene-ergosta-7-en-3β-ol, fucosterol, and gramisterol, along with three triterpenoids, cycloeucalenol, lupenone, and lupeol, were found in the two sub-fractions that showed strong anti-leukemic cell proliferation (IC50 = 2.80 and 32.89 μg/mL). The other sterols and triterpenoids were campesterol, stigmasterol, β-sitosterol and 24-methylenecycloartanol. Together with the data from in vitro biological analysis, we suggest that gramisterol is a significant anti-cancer lead compound in Riceberry bran extract.

    Topics: Animals; Antineoplastic Agents, Phytogenic; Cell Line, Tumor; Cholesterol; Chromatography, High Pressure Liquid; Gas Chromatography-Mass Spectrometry; Leukemia; Mass Spectrometry; Mice; Molecular Structure; Oryza; Pentacyclic Triterpenes; Phytosterols; Phytotherapy; Plant Extracts; Seeds; Sitosterols; Stigmasterol; Triterpenes

2015
A comparative calorimetric and spectroscopic study of the effects of cholesterol and of the plant sterols β-sitosterol and stigmasterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes.
    Biochimica et biophysica acta, 2015, Volume: 1848, Issue:8

    We performed comparative DSC and FTIR spectroscopic measurements of the effects of β-sitosterol (Sito) and stigmasterol (Stig) on the thermotropic phase behavior and organization of DPPC bilayers. Sito and Stig are the major sterols in the biological membranes of higher plants, whereas cholesterol (Chol) is the major sterol in mammalian membranes. Sito differs in structure from Chol in having an ethyl group at C24 of the alkyl side-chain, and Stig in having both the C24 ethyl group and trans-double bond at C22. Our DSC studies indicate that the progressive incorporation of Sito and Stig decrease the temperature and cooperativity of the pretransition of DPPC to a slightly lesser and greater extent than Chol, respectively, but the pretransition persists to 10 mol % sterol concentration in all cases. All three sterols produce essentially identical effects on the thermodynamic parameters of the sharp component of the DPPC main phase transition. However, the ability to increase the temperature and decrease the cooperativity and enthalpy of the broad component decreases in the order Chol>Sito>Stig. Nevertheless, at higher Sito/Stig concentrations, there is no evidence of sterol crystallites. Our FTIR spectroscopic studies demonstrate that Sito and especially Stig incorporation produces a smaller ordering of the hydrocarbon chains of fluid DPPC bilayers than does Chol. In general, the presence of a C24 ethyl group in the alkyl side-chain reduces the characteristic effects of Chol on the thermotropic phase behavior and organization of DPPC bilayer membranes, and a trans-double bond at C22 magnifies this effect.

    Topics: 1,2-Dipalmitoylphosphatidylcholine; Calorimetry, Differential Scanning; Cholestadienols; Cholesterol; Lipid Bilayers; Molecular Structure; Phase Transition; Phytosterols; Sitosterols; Spectroscopy, Fourier Transform Infrared; Stigmasterol; Temperature

2015
Subcritical extraction of flaxseed oil with n-propane: Composition and purity.
    Food chemistry, 2015, Dec-01, Volume: 188

    Flaxseed (Linum usitatissimum L.) oil was obtained via subcritical n-propane fluid extraction (SubFE) under different temperatures and pressures with an average yield of 28% and its composition, purity and oxidative stability were compared to oils obtained via conventional solvent extraction methods (SEMs). When the oxidative stability was measured by differential scanning calorimetry, the oil was found to be up to 5 times more resistant to lipid oxidation as compared to the SEM oils. Direct infusion electrospray ionization mass spectrometry (ESI-MS) analysis showed characteristic and similar TAG profiles for SubFE and SEMs oils but higher purity for the SubFE oil. The flaxseed oil content of β-tocopherol, campesterol, stigmasterol and sitosterol were quantified via GC-MS. SubFE showed to be a promising alternative to conventional SEM since SubFE provides an oil with higher purity and higher oxidation stability and with comparable levels of biologically active components.

    Topics: beta-Tocopherol; Calorimetry, Differential Scanning; Chemical Fractionation; Cholesterol; Gas Chromatography-Mass Spectrometry; Linseed Oil; Oxidation-Reduction; Phytosterols; Pressure; Principal Component Analysis; Propane; Sitosterols; Spectrometry, Mass, Electrospray Ionization; Stigmasterol; Temperature

2015
Retama monosperma n-hexane extract induces cell cycle arrest and extrinsic pathway-dependent apoptosis in Jurkat cells.
    BMC complementary and alternative medicine, 2014, Jan-24, Volume: 14

    Retama monosperma L. (Boiss.) or Genista monosperma L. (Lam.), locally named as "R'tam", is an annual and spontaneous plant belonging to the Fabaceae family. In Morocco, Retama genus is located in desert regions and across the Middle Atlas and it has been widely used in traditional medicine in many countries. In this study, we show that Retama monosperma hexane extract presents significant anti-leukemic effects against human Jurkat cells.. Human Jurkat cells, together with other cell lines were screened with different concentrations of Retama monosperma hexane extract at different time intervals. Growth inhibition was determined using luminescent-based viability assays. Cell cycle arrest and apoptosis were measured by flow cytometry analysis. Combined caspase 3 and 7 activities were measured using luminometric caspase assays and immunoblots were performed to analyze expression of relevant pro- and anti-apoptotic proteins. GC-MS were used to determine the chemical constituents of the active extract.. Retama monosperma hexane extract (Rm-HE) showed significant cytotoxicity against Jurkat cells, whereas it proved to be essentially ineffective against both normal mouse fibroblasts (NIH3T3) and normal lymphocytes (TK-6). Cytometric analysis indicated that Rm-HE promoted cell cycle arrest and apoptosis induction accompanied by DNA damage induction indicated by an increase in p-H2A.X levels. Rm-HE induced apoptosis was partially JNK-dependent and characterized by an increase in Fas-L levels together with activation of caspases 8, 3, 7 and 9, whereas neither the pro-apoptotic nor anti-apoptotic mitochondrial membrane proteins analyzed were significantly altered. Chemical identification analysis indicated that α-linolenic acid, campesterol, stigmasterol and sitosterol were the major bioactive components within the extract.. Our data suggest that bioactive compounds present in Rm-HE show significant anti leukemic activity inducing cell cycle arrest and cell death that operates, at least partially, through the extrinsic apoptosis pathway.

    Topics: alpha-Linolenic Acid; Animals; Antineoplastic Agents, Phytogenic; Apoptosis; Apoptosis Regulatory Proteins; Caspase 3; Caspases; Cell Cycle Checkpoints; Cell Death; Cell Proliferation; Cholesterol; Fabaceae; Fas Ligand Protein; Humans; Jurkat Cells; Leukemia, T-Cell; MAP Kinase Kinase 4; Mice; NIH 3T3 Cells; Phytosterols; Phytotherapy; Plant Extracts; Signal Transduction; Sitosterols; Stigmasterol

2014
Characterization of oilseed lipids from "DHA-producing Camelina sativa": a new transformed land plant containing long-chain omega-3 oils.
    Nutrients, 2014, Feb-21, Volume: 6, Issue:2

    New and sustainable sources of long-chain (LC, ≥C₂₀) omega-3 oils containing DHA (docosahexaenoic acid, 22:6ω3) are required to meet increasing demands. The lipid content of the oilseed of a novel transgenic, DHA-producing land plant, Camelina sativa, containing microalgal genes able to produce LC omega-3 oils, contained 36% lipid by weight with triacylglycerols (TAG) as the major lipid class in hexane extracts (96% of total lipid). Subsequent chloroform-methanol (CM) extraction recovered further lipid (~50% polar lipid, comprising glycolipids and phospholipids) and residual TAG. The main phospholipid species were phosphatidyl choline and phosphatidyl ethanolamine. The % DHA was: 6.8% (of total fatty acids) in the TAG-rich hexane extract and 4.2% in the polar lipid-rich CM extract. The relative level of ALA (α-linolenic acid, 18:3ω3) in DHA-camelina seed was higher than the control. Major sterols in both DHA- and control camelina seeds were: sitosterol, campesterol, cholesterol, brassicasterol and isofucosterol. C₁₆-C₂₂ fatty alcohols, including iso-branched and odd-chain alcohols were present, including high levels of iso-17:0, 17:0 and 19:0. Other alcohols present were: 16:0, iso-18:0, 18:0 and 18:1 and the proportions varied between the hexane and CM extracts. These iso-branched odd-chain fatty alcohols, to our knowledge, have not been previously reported. These components may be derived from wax esters, or free fatty alcohols.

    Topics: Brassicaceae; Cholestadienols; Cholesterol; Fatty Acids, Omega-3; Gas Chromatography-Mass Spectrometry; Phospholipids; Phytosterols; Plant Oils; Plants, Genetically Modified; Seeds; Sitosterols; Stigmasterol; Triglycerides

2014
Biotransformation of phytosterols under aerobic conditions.
    Water research, 2014, Jul-01, Volume: 58

    Phytosterols are plant-derived sterols present in pulp and paper wastewater and have been implicated in the endocrine disruption of aquatic species. Bioassays were performed to assess the effect of an additional carbon source and/or solubilizing agent on the aerobic biotransformation of a mixture of three common phytosterols (β-sitosterol, stigmasterol and campesterol). The aerobic biotransformation of the phytosterol mixture by a mixed culture developed from a pulp and paper wastewater treatment system was examined under three separate conditions: with phytosterols as the sole added carbon source, with phytosterols and dextrin as an additional carbon source, and with phytosterols added with ethanol as an additional carbon source and solubilizing agent. Significant phytosterol removal was not observed in assays set up with phytosterol powder, either with or without an additional carbon source. In contrast, all three phytosterols were aerobically degraded when added as a dissolved solution in ethanol. Thus, under the experimental conditions of this study, the bioavailability of phytosterols was limited without the presence of a solubilizing agent. The total phytosterol removal rate was linear for the first six days before re-spiking, with a rate of 0.47 mg/L-d (R(2) = 0.998). After the second spiking, the total phytosterol removal rate was linear for seven days, with a rate of 0.32 mg/L-d (R(2) = 0.968). Following the 7th day, the phytosterol removal rate markedly accelerated, suggesting two different mechanisms are involved in phytosterol biotransformation, more likely related to the production of enzyme(s) involved in phytosterol degradation, induced under different cell growth conditions. β-sitosterol was preferentially degraded, as compared to stigmasterol and campesterol, although all three phytosterols fell below detection limits by the 24th day of incubation.

    Topics: Bacteria, Aerobic; Biodegradation, Environmental; Biotechnology; Biotransformation; Carbon; Cholesterol; Dextrins; Ethanol; Phytosterols; Sitosterols; Stigmasterol; Water Pollutants, Chemical

2014
Sterol partitioning by HMGR and DXR for routing intermediates toward withanolide biosynthesis.
    Physiologia plantarum, 2014, Volume: 152, Issue:4

    Withanolides biosynthesis in the plant Withania somnifera (L.) Dunal is hypothesized to be diverged from sterol pathway at the level of 24-methylene cholesterol. The conversion and translocation of intermediates for sterols and withanolides are yet to be characterized in this plant. To understand the influence of mevalonate (MVA) and 2-C-methyl-d-erythritol-4-phosphate (MEP) pathways on sterols and withanolides biosynthesis in planta, we overexpressed the WsHMGR2 and WsDXR2 in tobacco, analyzed the effect of transient suppression through RNAi, inhibited MVA and MEP pathways and fed the leaf tissue with different sterols. Overexpression of WsHMGR2 increased cycloartenol, sitosterol, stigmasterol and campesterol compared to WsDXR2 transgene lines. Increase in cholesterol was, however, marginally higher in WsDXR2 transgenic lines. This was further validated through transient suppression analysis, and pathway inhibition where cholesterol reduction was found higher due to WsDXR2 suppression and all other sterols were affected predominantly by WsHMGR2 suppression in leaf. The transcript abundance and enzyme analysis data also correlate with sterol accumulation. Cholesterol feeding did not increase the withanolide content compared to cycloartenol, sitosterol, stigmasterol and campesterol. Hence, a preferential translocation of carbon from MVA and MEP pathways was found differentiating the sterols types. Overall results suggested that MVA pathway was predominant in contributing intermediates for withanolides synthesis mainly through the campesterol/stigmasterol route in planta.

    Topics: Base Sequence; Biosynthetic Pathways; Carbon; Cholesterol; Erythritol; Gene Expression; Gene Expression Regulation, Plant; Mevalonic Acid; Molecular Sequence Data; Nicotiana; Phylogeny; Phytosterols; Plant Leaves; Plant Proteins; Plants, Genetically Modified; Sequence Analysis, DNA; Sitosterols; Sterols; Stigmasterol; Sugar Phosphates; Triterpenes; Withania; Withanolides

2014
Determination of sterols using liquid chromatography with off-line surface-assisted laser desorption/ionization mass spectrometry.
    Journal of chromatography. A, 2014, Sep-05, Volume: 1358

    A new method, reversed phase liquid chromatography with off-line surface-assisted laser desorption/ionization mass spectrometry (RPLC-SALDI MS) for the determination of brassicasterol (BR), cholesterol (CH), stigmasterol (ST), campesterol (CA) and β-sitosterol (SI) in oil samples has been developed. The sample preparation consisted of alkaline saponification followed by extraction of the unsaponificable fraction with diethyl ether. The recovery of the sterols ranged from 91 to 95% with RSD less than 4%. Separation of the five major sterols on a C18 column using methanol-water gradient was achieved in about 10min. An on-line UV detector was employed for the initial sterol detection prior to effluent deposition using a laboratory-built spotter with 1:73 splitter. Off-line SALDI MS was then applied for mass determination/identification and quantification of the separated sterols. Ionization of the nonpolar analytes was achieved by silver ion cationization with silver nanoparticles used as the SALDI matrix providing limits of detection 12, 6 and 11fmol for CH, ST and SI, respectively. Because of the incorporated splitter, the effective limits of detection of the RPLC-SALDI MS analysis were 4, 3 and 4pmol (or 0.08, 0.06 and 0.08μg/mL) for CH, ST and SI, respectively. For quantification, 6-ketocholestanol (KE) was used as the internal standard. The method has been applied for the identification and quantification of sterols in olive, linseed and sunflower oil samples. The described off-line coupling of RPLC to SALDI MS represents an alternative to GC-MS for analysis of nonpolar compounds.

    Topics: Cholestadienols; Cholesterol; Chromatography, Reverse-Phase; Ketocholesterols; Linseed Oil; Olive Oil; Phytosterols; Plant Oils; Reference Standards; Silver; Sitosterols; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization; Stigmasterol; Sunflower Oil

2014
Variation in oil content, fatty acid and phytosterols profile of Onopordum acanthium L. during seed development.
    Natural product research, 2014, Volume: 28, Issue:24

    This study has determined oil, fatty acid (FA) and phytosterols content during the ripening of the Tunisian Onopordum acanthium L. seeds. In total, nine FAs and six phytosterols were identified. The main FAs were linoleic acid (0.18-8.06 mg/g of seed) followed by oleic acid (0.051-2.45 mg/g of seed), palmitic acid and stearic acid. Pentadecanoic acid was detected, for the first time, in unripe fruits and the two last stages of development were characterised by a relative abundance of erucic acid. Overall, β-sitosterol (34.5-77.79% of total sterols) was the major 4-desmethylsterols during maturation. The first episodes of growth were characterised by the best amounts of stigmasterol and campesterol, while stigmastanol and Δ7 sitosterol had quoted the semi-ripe and fully ripe fruits; however, cholesterol was absent. These findings are useful in understanding a potential new source of important natural compounds (Phytosterols and USFA) found in this fruit and when harvest should be undertaken to optimise desired FA and phytosterols content.

    Topics: Cholesterol; Fatty Acids; Fruit; Linoleic Acid; Oleic Acid; Onopordum; Phytosterols; Plant Oils; Seeds; Sitosterols; Stigmasterol; Tunisia

2014
Chemical characterization and antioxidant activity of Amazonian (Ecuador) Caryodendron orinocense Karst. and Bactris gasipaes Kunth seed oils.
    Journal of oleo science, 2014, Volume: 63, Issue:12

    Nowadays, data concerning the composition of Caryodendron orinocense Karst. (Euphorbiaceae) and Bactris gasipaes Kunth (Arecaceae) seed oils are lacking. In light of this fact, in this paper fatty acids and unsaponifiable fraction composition have been determined using GC-MS, HPLC-DAD (Diode Array Detector), NMR approaches and possible future applications have been preliminary investigated through estimation of antioxidant activity, performed with DPPH test. For C. orinocense linoleic acid (85.59%) was the main component, lauric (33.29%) and myristic (27.76%) acids were instead the most abundant in B. gasipaes. C. orinocense unsaponifiable fraction (8.06%) evidenced a remarkable content of β-sitosterol, campesterol, stigmasterol, squalene and vitamin E (816 ppm). B. gasipaes revealed instead β-sitosterol and squalene as main constituents of unsaponifiable matter (3.01%). Antioxidant capacity evidenced the best performance of C. orinocense seed oil. These preliminary results could be interesting to suggest the improvement of the population's incomes from Amazonian basin. In particular the knowledge of chemical composition of C. orinocense and B. gasipaes oils could be helpful to divulge and valorize these autochthones plants.

    Topics: Antioxidants; Arecaceae; Cholesterol; Chromatography, High Pressure Liquid; Euphorbiaceae; Fatty Acids; Free Radical Scavengers; Gas Chromatography-Mass Spectrometry; Lauric Acids; Linoleic Acid; Magnetic Resonance Spectroscopy; Myristic Acid; Nuts; Phytosterols; Plant Oils; Seeds; Sitosterols; Squalene; Stigmasterol; Vitamin E

2014
Common sources and composition of phytosterols and their estimated intake by the population in the city of São Paulo, Brazil.
    Nutrition (Burbank, Los Angeles County, Calif.), 2013, Volume: 29, Issue:6

    Phytosterols have been used alone, or combined with lipid-altering drugs, to reduce cholesterol levels and the burden of cardiovascular disease. Considerable variation in the composition of phytosterols exists and its consumption, in a regular diet, by the Brazilian population is still unknown. Thus, the aim of the present study was to determine the phytosterols content of the most consumed plant foods and to estimate the phytosterols intake by this population.. Intake of plant foods of a representative population of the city of São Paulo (n = 1609), randomly selected on the basis of the Brazilian Institute for Geography and Statistics census data (2010), was obtained by a food frequency questionnaire (FFQ). Foods were chosen on the basis of the Consume Expenditure Survey (2002-2003) and from answers to the FFQ. Phytosterols composition of most consumed greens, legumes, cereals, and seeds, fruits, and vegetable oils was determined by gas chromatography (flame ionization detection). Daily phytosterols intake was estimated in terms of mg per 100 g (mg/100 g(-1)) of edible portion. Underreporters and overreporters were excluded.. Mean (SE) daily phytosterols intake in the diet of the study population was 100.6 (1.2) mg, with β-sitosterol as the largest sterol component (65.4%), followed by campesterol (23.2%), and stigmasterol (10%). No significant changes in daily phytosterols intake were observed after exclusion of underreporters and overreporters. Considerable variation was observed in phytosterols content among the most consumed plant foods.. Analysis of phytosterols composition in most consumed plant foods has shown that phytosterols content varied among food groups. Dietary intake of phytosterols in a large population of the city of São Paulo is in the same range of some countries.

    Topics: Adult; Aged; Brazil; Cholesterol; Chromatography, Gas; Cross-Sectional Studies; Edible Grain; Fabaceae; Feeding Behavior; Female; Fruit; Humans; Male; Middle Aged; Nutrition Assessment; Phytosterols; Plant Oils; Plants, Edible; Seeds; Sitosterols; Stigmasterol; Surveys and Questionnaires; Vegetables; Young Adult

2013
Quantitative analysis of phytosterols in edible oils using APCI liquid chromatography-tandem mass spectrometry.
    Lipids, 2013, Volume: 48, Issue:9

    Previous methods for the quantitative analysis of phytosterols have usually used GC-MS and require elaborate sample preparation including chemical derivatization. Other common methods such as HPLC with absorbance detection do not provide information regarding the identity of the analytes. To address the need for an assay that utilizes mass selectivity while avoiding derivatization, a quantitative method based on LC-tandem mass spectrometry (LC-MS-MS) was developed and validated for the measurement of six abundant dietary phytosterols and structurally related triterpene alcohols including brassicasterol, campesterol, cycloartenol, β-sitosterol, stigmasterol, and lupeol in edible oils. Samples were saponified, extracted with hexane and then analyzed using reversed phase HPLC with positive ion atmospheric pressure chemical ionization tandem mass spectrometry and selected reaction monitoring. The utility of the LC-MS-MS method was demonstrated by analyzing 14 edible oils. All six compounds were present in at least some of the edible oils. The most abundant phytosterol in all samples was β-sitosterol, which was highest in corn oil at 4.35 ± 0.03 mg/g, followed by campesterol in canola oil at 1.84 ± 0.01 mg/g. The new LC-MS-MS method for the quantitative analysis of phytosterols provides a combination of speed, selectivity and sensitivity that exceed those of previous assays.

    Topics: Cholestadienols; Cholesterol; Chromatography, Liquid; Molecular Structure; Pentacyclic Triterpenes; Phytosterols; Plant Oils; Reproducibility of Results; Sitosterols; Stigmasterol; Tandem Mass Spectrometry; Triterpenes

2013
Molecular characterization of Glycine max squalene synthase genes in seed phytosterol biosynthesis.
    Plant physiology and biochemistry : PPB, 2013, Volume: 73

    The reaction catalyzed by squalene synthase (EC.2.5.1.21) that converts two molecules of farnesyl pyrophosphate to squalene represents a crucial branch point of the isoprenoid pathway in diverting carbon flux towards the biosynthesis of sterols. In the present study two soybean squalene synthase genes, GmSQS1 and GmSQS2, were identified in the soybean genome and functionally characterized for their roles in sterol biosynthesis. Both genes encode a deduced protein of 413 amino acids. Complementation assays showed that the two genes were able to convert yeast sterol auxotrophy erg9 mutant to sterol prototrophy. Expression of GmSQS1 and GmSQS2 was ubiquitous in roots, stem, leaves, flower and young seeds of soybean, however GmSQS1 transcript was preferential in roots while GmSQS2 transcript was more in leaves. Their expression was lower in response to dehydration treatments suggesting they might be negative regulators of water stress adaptation. Transgenic Arabidopsis plants overexpressing GmSQS1 driven by either constitutive or seed-specific promoters showed increases in the major end product sterols: campesterol, sitosterol and stigmasterol, which resulted in up to 50% increase in total sterol content in the seeds. The increase in the end product sterols by GmSQS1 overexpression was at the level achievable by previously reported overexpression of individual or combination of other key enzymes in the sterol pathway. Together the data demonstrate that soybean SQS genes play an important role in diverting carbon flux to the biosynthesis of the end product sterols in the seeds.

    Topics: Adaptation, Physiological; Amino Acid Sequence; Carbon; Cholesterol; Droughts; Farnesyl-Diphosphate Farnesyltransferase; Gene Expression Regulation, Plant; Genes, Plant; Glycine max; Molecular Sequence Data; Mutation; Phytosterols; Plant Leaves; Plant Proteins; Polyisoprenyl Phosphates; Promoter Regions, Genetic; Seeds; Sesquiterpenes; Sitosterols; Squalene; Stigmasterol; Stress, Physiological; Water

2013
Effect of pigeon pea (Cajanus cajan L.) on high-fat diet-induced hypercholesterolemia in hamsters.
    Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 2013, Volume: 53

    Obesity is associated with increased systemic and airway oxidative stress, which may result from a combination of adipokine imbalance and antioxidant defenses reduction. Obesity-mediated oxidative stress plays an important role in the pathogenesis of dyslipidemia, vascular disease, and nonalcoholic hepatic steatosis. The antidyslipidemic activity of pigeon pea were evaluated by high-fat diet (HFD) hamsters model, in which the level of high-density lipoprotein-cholesterol (HDL-C), low-density lipoprotein-cholesterol (LDL-C), total cholesterol (TC), and total triglyceride (TG) were examined. We found that pigeon pea administration promoted cholesterol converting to bile acid in HFD-induced hamsters, thereby exerting hypolipidemic activity. In the statistical results, pigeon pea significantly increased hepatic carnitine palmitoyltransferase-1 (CPT-1), LDL receptor, and cholesterol 7α-hydroxylase (also known as cytochrome P450 7A1, CYP7A1) expression to attenuate dyslipidemia in HFD-fed hamsters; and markedly elevated antioxidant enzymes in the liver of HFD-induced hamsters, further alleviating lipid peroxidation. These effects may attribute to pigeon pea contained large of unsaturated fatty acids (UFA; C18:2) and phytosterol (β-sitosterol, campesterol, and stigmasterol). Moreover, the effects of pigeon pea on dyslipidemia were greater than β-sitosterol administration (4%), suggesting that phytosterone in pigeon pea could prevent metabolic syndrome.

    Topics: Animals; Antioxidants; Cajanus; Carnitine O-Palmitoyltransferase; Cholesterol; Cholesterol 7-alpha-Hydroxylase; Cholesterol, HDL; Cholesterol, LDL; Chromatography, High Pressure Liquid; Cricetinae; Diet, High-Fat; Disease Models, Animal; Hypercholesterolemia; Lipid Peroxidation; Liver; Male; Obesity; Oxidative Stress; Phytosterols; Receptors, LDL; Sitosterols; Stigmasterol; Triglycerides

2013
An ultra performance liquid chromatographic method for determining phytosterol uptake by Caco-2 cells.
    Analytical biochemistry, 2012, Feb-01, Volume: 421, Issue:1

    A simple method for the determination of cellular uptake of phytosterols by Caco-2 cells has been developed by ultra performance liquid chromatography with ultraviolet detection (UPLC-UV). UPLC-UV was established using an ODS column, acetonitrile/H(2)O (9:1, v/v) as a mobile phase, and a detection wavelength at 210 nm. As analytes, β-sitosterol, campesterol, stigmasterol, and brassicasterol were selected based on the abundance in foods and the similarity of their structures. A linear relation was observed between the peak area and the amount of sterol injected from 50 to 2000 pmol (r>0.999) with a relative standard deviation (RSD) of less than 2.5% (n=6). This method was applied to the determination of cellular uptake of phytosterols by Caco-2 cells. Recovery tests showed that phytosterols were extracted from the cell lysates by chloroform and determined by UPLC-UV with a recovery rate of more than 80.2% and an RSD of less than 11.3% (n=3). When Caco-2 cells were incubated with phytosterols at 37°C, their uptake was increased with time in a concentration-dependent manner. This method will be useful for the simultaneous determination of cellular phytosterols in an in vitro intestine model.

    Topics: Biological Transport, Active; Caco-2 Cells; Cholestadienols; Cholesterol; Chromatography, Liquid; Humans; Kinetics; Phytosterols; Sitosterols; Stigmasterol

2012
Parenteral plant sterols and intestinal failure-associated liver disease in neonates.
    Journal of pediatric gastroenterology and nutrition, 2012, Volume: 54, Issue:6

    We prospectively evaluated incidence of prolonged (>28 days) parenteral nutrition (PN), associated complications, and significance of parenteral plant sterols (PS) in neonatal intestinal failure-associated liver disease (IFALD) compared with children.. We recruited 28 neonates (mean age 50 days, range 28-126) and 11 children (6.9 y, 2.1-16.6) in all of Finland. Patients underwent repeated measurements of serum cholesterol, noncholesterol sterols, including PS, cholestanol and cholesterol precursors, and liver biochemistry during and 1 month after discontinuation of PN. Healthy matched neonates (n=10) and children (n=22) served as controls.. IFALD occurred more frequently among neonates (63%) than children (27%; P<0.05). Ratios of serum PS, including stigmasterol, sitosterol, avenasterol, and campesterol, and total PS were increased among neonates compared with healthy controls and children on PN by 2- to 22- and 2- to 5-fold (P<0.005), respectively. Neonates with IFALD had significantly higher ratios of serum PS and cholestanol compared with neonates without IFALD (P<0.05). Total duration of PN associated with serum cholestanol, stigmasterol, avenasterol, alanine aminotransferase, and aspartate aminotransferase (r=0.472-0.636, P<0.05). Cholestanol and individual serum PS, excluding campesterol, reflected direct bilirubin (r=0.529-0.688, P<0.05). IFALD persisted after discontinuation of PN in 25% of neonates with 4.2- and 2.2-times higher ratios of serum stigmasterol and cholestanol compared with neonates without IFALD (P<0.05).. Frequent occurrence of IFALD among neonates on PN displays an association to duration of PN and markedly increased serum PS, especially stigmasterol, in comparison to healthy neonates and children on PN. Striking accumulation of parenteral PS may contribute to IFALD among neonates.

    Topics: Adolescent; Age Factors; Alanine Transaminase; Aspartate Aminotransferases; Bilirubin; Child; Child, Preschool; Cholestanol; Cholesterol; Dietary Fats; Fat Emulsions, Intravenous; Female; Finland; Humans; Infant; Infant, Newborn; Intestinal Diseases; Liver Diseases; Male; Olive Oil; Parenteral Nutrition; Phytosterols; Plant Oils; Prevalence; Prospective Studies; Soybean Oil; Stigmasterol

2012
Dietary intake of plant sterols stably increases plant sterol levels in the murine brain.
    Journal of lipid research, 2012, Volume: 53, Issue:4

    Plant sterols such as sitosterol and campesterol are frequently administered as cholesterol-lowering supplements in food. Recently, it has been shown in mice that, in contrast to the structurally related cholesterol, circulating plant sterols can enter the brain. We questioned whether the accumulation of plant sterols in murine brain is reversible. After being fed a plant sterol ester-enriched diet for 6 weeks, C57BL/6NCrl mice displayed significantly increased concentrations of plant sterols in serum, liver, and brain by 2- to 3-fold. Blocking intestinal sterol uptake for the next 6 months while feeding the mice with a plant stanol ester-enriched diet resulted in strongly decreased plant sterol levels in serum and liver, without affecting brain plant sterol levels. Relative to plasma concentrations, brain levels of campesterol were higher than sitosterol, suggesting that campesterol traverses the blood-brain barrier more efficiently. In vitro experiments with brain endothelial cell cultures showed that campesterol crossed the blood-brain barrier more efficiently than sitosterol. We conclude that, over a 6-month period, plant sterol accumulation in murine brain is virtually irreversible.

    Topics: Animals; Astrocytoma; Blood-Brain Barrier; Brain; Cell Line, Tumor; Cholesterol; Diet; Dose-Response Relationship, Drug; Endothelial Cells; Humans; Liver; Male; Membrane Microdomains; Mice; Mice, Inbred C57BL; Phytosterols; Sitosterols; Stigmasterol; Time Factors

2012
Phytosterols differentially influence ABC transporter expression, cholesterol efflux and inflammatory cytokine secretion in macrophage foam cells.
    The Journal of nutritional biochemistry, 2011, Volume: 22, Issue:8

    Phytosterol supplements lower low-density lipoprotein (LDL) cholesterol, but accumulate in vascular lesions of patients and limit the anti-atherosclerotic effects of LDL lowering in apolipoprotein E (Apo E)-deficient mice, suggesting that the cholesterol-lowering benefit of phytosterol supplementation may not be fully realized. Individual phytosterols have cell-type specific effects that may be either beneficial or deleterious with respect to atherosclerosis, but little is known concerning their effects on macrophage function. The effects of phytosterols on ABCA1 and ABCG1 abundance, cholesterol efflux and inflammatory cytokine secretion were determined in cultured macrophage foam cells. Among the commonly consumed phytosterols, stigmasterol increased expression of ABCA1 and ABCG1 and increased efflux of cholesterol to apolipoprotein (Apo) AI and high-density lipoprotein (HDL). Campesterol and sitosterol had no effect on ABCA1 or ABCG1 levels. Sitosterol had no effect on cholesterol efflux to Apo AI or HDL, whereas campesterol had a modest but significant reduction in cholesterol efflux to HDL in THP-1 macrophages. Whereas stigmasterol blunted aggregated LDL (agLDL) induced increases in tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β secretion, sitosterol exacerbated these effects. The presence of campesterol had no effect on agLDL-induced inflammatory cytokine secretion from THP-1 macrophages. In conclusion, the presence of stigmasterol in modified lipoproteins promoted cholesterol efflux and suppressed inflammatory cytokine secretion in response to lipid loading in macrophage foam cells. While campesterol was largely inert, the presence of sitosterol increased the proinflammatory cytokine secretion.

    Topics: Animals; Apolipoprotein A-I; ATP Binding Cassette Transporter 1; ATP Binding Cassette Transporter, Subfamily G, Member 1; ATP-Binding Cassette Transporters; Cells, Cultured; Cholesterol; Foam Cells; Humans; Interleukin-1beta; Interleukin-6; Interleukin-8; Lipoproteins; Lipoproteins, HDL; Lipoproteins, LDL; Male; Mice; Mice, Inbred C57BL; Phytosterols; Sitosterols; Stigmasterol; Tumor Necrosis Factor-alpha

2011
Quantification of sterol lipids in plants by quadrupole time-of-flight mass spectrometry.
    Journal of lipid research, 2011, Volume: 52, Issue:5

    Glycerolipids, sphingolipids, and sterol lipids constitute the major lipid classes in plants. Sterol lipids are composed of free and conjugated sterols, i.e., sterol esters, sterol glycosides, and acylated sterol glycosides. Sterol lipids play crucial roles during adaption to abiotic stresses and plant-pathogen interactions. Presently, no comprehensive method for sterol lipid quantification in plants is available. We used nanospray ionization quadrupole-time-of-flight mass spectrometry (Q-TOF MS) to resolve and identify the molecular species of all four sterol lipid classes from Arabidopsis thaliana. Free sterols were derivatized with chlorobetainyl chloride. Sterol esters, sterol glycosides, and acylated sterol glycosides were ionized as ammonium adducts. Quantification of molecular species was achieved in the positive mode after fragmentation in the presence of internal standards. The amounts of sterol lipids quantified by Q-TOF MS/MS were validated by comparison with results obtained with TLC/GC. Quantification of sterol lipids from leaves and roots of phosphate-deprived A. thaliana plants revealed changes in the amounts and molecular species composition. The Q-TOF method is far more sensitive than GC or HPLC. Therefore, Q-TOF MS/MS provides a comprehensive strategy for sterol lipid quantification that can be adapted to other tandem mass spectrometers.

    Topics: Arabidopsis; Cholesterol; Chromatography, Gas; Chromatography, Thin Layer; Lipids; Mass Spectrometry; Phytosterols; Plants; Sitosterols; Sterols; Stigmasterol

2011
Cerebral accumulation of dietary derivable plant sterols does not interfere with memory and anxiety related behavior in Abcg5-/- mice.
    Plant foods for human nutrition (Dordrecht, Netherlands), 2011, Volume: 66, Issue:2

    Plant sterols such as sitosterol and campesterol are frequently applied as functional food in the prevention of atherosclerosis. Recently, it became clear that plasma derived plant sterols accumulate in murine brains. We questioned whether plant sterols in the brain are associated with alterations in brain cholesterol homeostasis and subsequently with brain functions. ATP binding cassette (Abc)g5-/- mice, a phytosterolemia model, were compared to Abcg5+/+ mice for serum and brain plant sterol accumulation and behavioral and cognitive performance. Serum and brain plant sterol concentrations were respectively 35-70-fold and 5-12-fold increased in Abcg5-/- mice (P<0.001). Plant sterol accumulation resulted in decreased levels of desmosterol (P<0.01) and 24(S)-hydroxycholesterol (P<0.01) in the hippocampus, the brain region important for learning and memory functions, and increased lanosterol levels (P<0.01) in the cortex. However, Abcg5-/- and Abcg5+/+ displayed no differences in memory functions or in anxiety and mood related behavior. The swimming speed of the Abcg5-/- mice was slightly higher compared to Abcg5+/+ mice (P<0.001). In conclusion, plant sterols in the brains of Abcg5-/- mice did have consequences for brain cholesterol metabolism, but did not lead to an overt phenotype of memory or anxiety related behavior. Thus, our data provide no contra-indication for nutritional intake of plant sterol enriched nutrition.

    Topics: Affect; Animals; Anxiety Disorders; Atherosclerosis; ATP-Binding Cassette Transporters; Behavior, Animal; Brain; Cholesterol; Desmosterol; Diet; Hippocampus; Homeostasis; Hydroxycholesterols; Hypercholesterolemia; Intestinal Diseases; Lanosterol; Lipid Metabolism, Inborn Errors; Male; Maze Learning; Memory; Mice; Mice, Mutant Strains; Phytosterols; Sitosterols; Stigmasterol

2011
High-speed counter-current chromatographic separation of phytosterols.
    Analytical and bioanalytical chemistry, 2011, Volume: 400, Issue:10

    Phytosterols are bioactive compounds which occur in low concentrations in plant oils. Due to their beneficial effects on human health, phytosterols have already been supplemented to food. Commercial phytosterol standards show insufficient purity and/or are very expensive. In this study, we developed a high-speed counter-current chromatography (HSCCC) method for the fractionation and analysis of a commercial crude β-sitosterol standard (purity ∼60% according to supplier). Different solvent systems were tested in shake-flask experiments, and the system n-hexane/methanol/aqueous silver nitrate solution (34/24/1, v/v/v) was finally used for HSCCC fractionation. About 50 mg phytosterols was injected and distributed into 57 fractions. Selected fractions were condensed and re-injected into the HSCCC system. This measure provided pure sitostanol (>99%) and β-sitosterol (∼99%), as well as a mixture of campesterol and stigmasterol without further phytosterols. An enriched HSCCC fraction facilitated the mass spectrometric analysis of further 11 minor phytosterols (after trimethylsilylation). It was also shown that the commercial product contained about 0.3% carotinoids which eluted without delay into an early HSCCC fraction and which were separated from the phytosterols.

    Topics: Cholesterol; Countercurrent Distribution; Mass Spectrometry; Phytosterols; Sitosterols; Solvents; Stigmasterol

2011
Inhibition of sterol biosynthesis reduces tombusvirus replication in yeast and plants.
    Journal of virology, 2010, Volume: 84, Issue:5

    The replication of plus-strand RNA viruses depends on subcellular membranes. Recent genome-wide screens have revealed that the sterol biosynthesis genes ERG25 and ERG4 affected the replication of Tomato bushy stunt virus (TBSV) in a yeast model host. To further our understanding of the role of sterols in TBSV replication, we demonstrate that the downregulation of ERG25 or the inhibition of the activity of Erg25p with an inhibitor (6-amino-2-n-pentylthiobenzothiazole; APB) leads to a 3- to 5-fold reduction in TBSV replication in yeast. In addition, the sterol biosynthesis inhibitor lovastatin reduced TBSV replication by 4-fold, confirming the importance of sterols in viral replication. We also show reduced stability for the p92(pol) viral replication protein as well as a decrease in the in vitro activity of the tombusvirus replicase when isolated from APB-treated yeast. Moreover, APB treatment inhibits TBSV RNA accumulation in plant protoplasts and in Nicotiana benthamiana leaves. The inhibitory effect of APB on TBSV replication can be complemented by exogenous stigmasterol, the main plant sterol, suggesting that sterols are required for TBSV replication. The silencing of SMO1 and SMO2 genes, which are orthologs of ERG25, in N. benthamiana reduced TBSV RNA accumulation but had a lesser inhibitory effect on the unrelated Tobacco mosaic virus, suggesting that various viruses show different levels of dependence on sterol biosynthesis for their replication.

    Topics: Cholesterol; Enzyme Inhibitors; Gene Silencing; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Lovastatin; Mixed Function Oxygenases; Nicotiana; Oxidoreductases; Phytosterols; Plant Proteins; Protoplasts; RNA-Dependent RNA Polymerase; RNA, Viral; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Sterols; Stigmasterol; Thiazoles; Tombusvirus; Viral Proteins; Virus Replication

2010
The spectrum of plant and animal sterols in different oil-derived intravenous emulsions.
    Lipids, 2010, Volume: 45, Issue:1

    Intravenous lipid constituents have different effects on various biological processes. Some of these effects are protective, while others are potentially adverse. Phytosterols, in particular, seem to be implicated with parenteral nutrition-associated cholestasis. The aim of this study is to determine the amount of plant and animal sterols present in lipid formulations derived from different oil sources. To this end, animal (cholesterol) and plant (beta-sitosterol, campesterol, and stigmasterol) sterols in seven different commercially available intravenous lipid emulsions (ILEs) were quantified by capillary gas chromatography after performing a lipid extraction procedure. The two major constituents of the lipid emulsions were cholesterol (range 14-57% of total lipids) and beta-sitosterol (range 24-55%), followed by campesterol (range 8-18%) and stigmasterol (range 5-16%). The fish oil-derived formulation was an exception, as it contained only cholesterol. The mean values of the different sterols were statistically different across ILEs (P = 0.0000). A large percentage of pairwise comparisons were also statistically significant (P = 0.000), most notably for cholesterol and stigmasterol (14 out of 21 for both), followed by campesterol (12 out 21) and beta-sitosterol (11 out 21). In conclusion, most ILEs combined significant amounts of phytosterols and cholesterol. However, their phytosterols:cholesterol ratios were reversed compared to the normal human diet.

    Topics: Cholestasis; Cholesterol; Fat Emulsions, Intravenous; Fish Oils; Humans; Parenteral Nutrition, Total; Phytosterols; Sitosterols; Stigmasterol

2010
Ergosterol triggers characteristic elicitation steps in Beta vulgaris leaf tissues.
    Journal of experimental botany, 2010, Volume: 61, Issue:6

    This study investigates the role of the fungal sterol ergosterol as a general elicitor in the triggering of plant innate immunity in sugar beet. Evidence for this specific function of ergosterol is provided by careful comparison with cholesterol and three plant sterols (stigmasterol, campesterol, sitosterol), which do not enable the integrity of responses leading to elicitation. Our results demonstrate the modification of H(+) flux by ergosterol, due to the direct inhibition of the H(+)-ATPase activity on plasma membrane vesicles purified from leaves. The ergosterol-induced oxidative burst is related to enhanced NADPH-oxidase and superoxide dismutase activities. The similar effects obtained with the fungal elicitor chitosan further reinforce the particular role of ergosterol in the induced defences. The involvement of salicylic acid and/or jasmonic acid signalling in the ergosterol-enhanced plant non-host resistance is also studied. The possible link between ergosterol-triggered plant innate immunity and its putative impact on the structural organization of plant plasma membrane are discussed in terms of the ability of this fungal sterol to promote the formation of lipid rafts.

    Topics: Beta vulgaris; Biological Transport; Blotting, Western; Cell Membrane; Cholesterol; Electrophoresis, Polyacrylamide Gel; Enzyme Activation; Enzyme-Linked Immunosorbent Assay; Ergosterol; Hydrogen Peroxide; Hydrogen-Ion Concentration; Phytosterols; Plant Leaves; Sitosterols; Stigmasterol

2010
Oil and fatty acid diversity in genetically variable clones of Moringa oleifera from India.
    Journal of oleo science, 2009, Volume: 58, Issue:1

    The physico-chemical properties of oil from Moringa oleifera seeds from India were determined in the present study. The petroleum ether extracted oil ranged from 27.83 - 45.07% on kernel basis and 15.1-28.4% on whole seed basis in 20 different clones. Leaves and pods showed a good source of vitamin C. Oleic acid (C18:1) has been found to be the major fatty acid being 78.91-85.52% as compared to olive oil, which is considered to be richest source of oleic acid. All the clones from India did not show any presence of behenic acid (C 22:0). The oil was also found to contain high levels of beta-sitosterol ranged from 42.29-47.94% stigmasterol from 13.66-16.61%, campesterol from 12.53-16.63%. The gamma- and delta-tocopherol were found to be in the range of 128.0-146.95, 51.88-63.5 and 55.23-63.84 mg/kg, respectively.

    Topics: Ascorbic Acid; Cholesterol; Fatty Acids; gamma-Tocopherol; Genetic Variation; India; Moringa oleifera; Oleic Acid; Olive Oil; Phytosterols; Plant Oils; Seeds; Sitosterols; Stigmasterol; Tocopherols

2009
[Analysis of phytosterol contents in food plant materials and Chinese traditional medicines].
    Wei sheng yan jiu = Journal of hygiene research, 2009, Volume: 38, Issue:2

    To analyze the phytosterol content in food plant materials and Chinese traditional herbal medicines commonly used in China.. 18 kinds of food plant materials and 32 kinds of Chinese traditional herbal medicines, which were commonly used in functional food, were chosen as samples. The contents of beta-sitosterol, campesterol, stigmasterol, beta-sitostanol were analyzed by GC methods and the percent of each ingredient were calculated.. The contents of phytosterols in 18 kinds of food plant materials were from 14.8 mg/100 g to 208.3 mg/100 g, while the content of phytosterols in 32 Chinese traditional herbal medicines were from 9.4 mg/100 g to 280.3 mg/100 g. In most samples, beta-sitosterol is the largest part of total phytosterol.. Phytosterols were existed in 50 kinds of food plant materials and Chinese traditional herbal medicines commonly used in functional food, maybe phytosterol is an important functional ingredient in some plant materials.

    Topics: Cholesterol; Chromatography, Gas; Drugs, Chinese Herbal; Phytosterols; Plants, Medicinal; Sitosterols; Stigmasterol; Vegetables

2009
Cytotoxic components of Pereskia bleo (Kunth) DC. (Cactaceae) leaves.
    Molecules (Basel, Switzerland), 2009, May-06, Volume: 14, Issue:5

    Dihydroactinidiolide (1) and a mixture of sterols [campesterol (2), stigmasterol (3) and beta-sitosterol (4)], together with the previously isolated individual compounds beta-sitosterol (4), 2,4-di-tert-butylphenol (5), alpha-tocopherol (6), phytol (7) were isolated from the active ethyl acetate fraction of Pereskia bleo (Kunth) DC. (Cactaceae) leaves. Cytotoxic activities of the above mentioned compounds against five human carcinoma cell lines, namely the human nasopharyngeal epidermoid carcinoma cell line (KB), human cervical carcinoma cell line (CasKi), human colon carcinoma cell line (HCT 116), human hormone-dependent breast carcinoma cell line (MCF7) and human lung carcinoma cell line (A549); and non-cancer human fibroblast cell line (MRC-5) were investigated. Compound 5 possessed very remarkable cytotoxic activity against KB cells, with an IC(50 )value of 0.81microg/mL. This is the first report on the cytotoxic activities of the compounds isolated from Pereskia bleo.

    Topics: alpha-Tocopherol; Antineoplastic Agents, Phytogenic; Cactaceae; Cell Line, Tumor; Cholesterol; Drug Screening Assays, Antitumor; Humans; Molecular Structure; Phenols; Phytol; Phytosterols; Plant Leaves; Sitosterols; Stigmasterol

2009
Phytosterols accumulation in the seeds of Linum usitatissimum L.
    Plant physiology and biochemistry : PPB, 2009, Volume: 47, Issue:10

    A comparative study was performed to determine the free sterols content and composition during the development of three varieties of linseed (H52, O116 and P129). Seed samples were collected at regular intervals from 7 to 60 days after flowering (DAF). Ten compounds were identified: cholesterol, campesterol, brassicasterol, stigmasterol, beta-sitosterol, Delta5-avenasterol, cycloartenol; 24-methylene cycloartanol, obtusifoliol, citrostadienol. The maximum level of 4-desmethylsterols (1,515 mg/100g oil) was reached at 7 DAF in P129 variety. H52 had the highest level of 4-4 dimethylsterols (355 mg/100g oil) at 28 DAF. The greatest amount of 4-monomethylsterols (35 mg/100g oil) was detected in H52 at 14 DAF. During linseed development, beta sitosterol (830 mg/100g oil) was the major 4-desmethylsterols, followed by campesterol (564 mg/100g oil) and stigmasterol (265 mg/100g oil). Some of these compounds followed nearly the same accumulation pattern during linseed maturation.

    Topics: Cholestadienols; Cholesterol; Chromatography, Thin Layer; Flax; Flowers; Gas Chromatography-Mass Spectrometry; Phytosterols; Seeds; Sitosterols; Species Specificity; Stigmasterol; Time Factors; Triterpenes

2009
Validation of a method for the determination of sterols and triterpenes in the aerial part of Justicia anselliana (Nees) T. Anders by capillary gas chromatography.
    Journal of pharmaceutical and biomedical analysis, 2008, Dec-01, Volume: 48, Issue:4

    An accurate and sensitive method, combining soxhlet extraction, solid phase-extraction and capillary gas chromatography is described for the quantitative determination of one triterpene (lupeol) and three sterols (stigmasterol, campesterol and beta-sitosterol) and the detection of another triterpene (alpha-amyrin) from the aerial part of Justicia anselliana. This is the first method allowing the quantification of sterols and triterpenes in this plant. It has been fully validated in order to be able to compare the sterol and triterpene composition of different samples of J. anselliana and therefore help to explain the allelopathic activity due to these compounds. This method showed that the aerial part of J. anselliana contained (292+/-2)mg/kg of lupeol, (206+/-1)mg/kg of stigmasterol, (266+/-2)mg/kg of campesterol and (184+/-9)mg/kg of beta-sitosterol.

    Topics: Acanthaceae; Calibration; Cholesterol; Chromatography, Gas; Molecular Structure; Pentacyclic Triterpenes; Phytosterols; Plant Components, Aerial; Reference Standards; Reproducibility of Results; Sensitivity and Specificity; Sitosterols; Solid Phase Extraction; Sterols; Stigmasterol; Triterpenes

2008
[Analysis of lipid compounds of high-yielded rhizoma pinelliae growing in the west of Hubei province by gas chromatography-mass spectrometry].
    Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials, 2007, Volume: 30, Issue:6

    To investigate lipid components of high-yielded Pinellia ternata rhizomes growing in the west of Hubei province.. To determine the lipid chemical components in Pinellia ternata rhizomes with GC-MS method and NIST atlas.. Ten components have been found: palmitic acid (I), 9,12-octadecadienoic acid (II), pyrrolidine,1-(1-oxo-7,10-hexadecadienyl) (III), alpha-monpalmitin (IV), 1,3,12-nonadecatriene (V), campesterol (VI), stigmasta-5,22-dien-3-ol (VII), beta-sitosterol (VIII), stigmasta-5,24-dien-3-ol (IX), cycloartenol (X).. The relative contents of five kinds of phytosterol: campesterol 28.96%, stigmasta-5,22-dien-3-ol 9.24%, beta-sitosterol 50.77%, stigmasta-5,24-dien-3-ol 4.74%, cycloartenol 6.25%. Component II, III, V, VI, IX are the first time reported in Pinellia ternata.

    Topics: China; Cholesterol; Gas Chromatography-Mass Spectrometry; Linoleic Acid; Palmitic Acid; Phytosterols; Pinellia; Plant Tubers; Plants, Medicinal; Sitosterols; Stigmasterol

2007
Potent tyrosinase inhibitors from Trifolium balansae.
    Natural product research, 2006, Volume: 20, Issue:7

    Trifolium balansae (Leguminosae) yielded a phytylester, phytyl-1-hexanoate, three steroids, stigmast-5-ene-3 beta,26-diol, stigmast-5-ene-3-ol and campesterol, and an alcohol, pentacosanol which were reported for the first time from T.balansae. The structures of the isolates were determined by 1D and 2D NMR techniques and MS spectroscopy. Compounds 1-5 were tested for their enzyme tyrosinase activity. While compounds 1 and 5 did not show any inhibition against the enzyme tyrosinase, compounds 2, 3, and 4 exhibited potent inhibition against tyrosinase. Highly potent (IC50 = 2.39 microM) inhibition was found by compound 2, when compared with the standard tyrosinase inhibitors Kojic acid and L-mimosine.

    Topics: Cholesterol; Enzyme Inhibitors; Inhibitory Concentration 50; Molecular Structure; Monophenol Monooxygenase; Nuclear Magnetic Resonance, Biomolecular; Phytosterols; Plant Extracts; Spectrometry, Mass, Electrospray Ionization; Spectrophotometry, Infrared; Stigmasterol; Trifolium

2006
Solubility in and affinity for the bile salt micelle of plant sterols are important determinants of their intestinal absorption in rats.
    Lipids, 2006, Volume: 41, Issue:6

    Intestinal absorption of various plant sterols was investigated in thoracic duct-cannulated normal rats. Lymphatic recovery was the highest in campesterol, intermediate in brassicasterol and sitosterol, and the lowest in stigmasterol and sitostanol. Higher solubility in the bile salt micelle was observed in sitosterol, campesterol, and sitostanol than in brassicasterol and stigmasterol. The solubility of the latter two sterols was extremely low. When the affinity of plant sterols for the bile salt micelle was compared in an in vitro model system, which assessed sterol transfer from the micellar to the oil phase, the transfer rate was the highest in brassicasterol, intermediate in campesterol and stigmasterol, and lowest in sitosterol and sitostanol. Although no significant correlations between lymphatic recovery of plant sterols and their micellar solubility or transfer rate from the bile salt micelle were observed, highly positive correlation was obtained between the lymphatic recovery and the multiplication value of the micellar solubility and the transfer rate. These observations strongly suggest that both solubility in and affinity for the bile salt micelle of plant sterols are important determinants of their intestinal absorption in rats.

    Topics: Animals; Bile Acids and Salts; Cholestadienols; Cholesterol; Intestinal Absorption; Lymph; Male; Micelles; Models, Biological; Phytosterols; Rats; Rats, Wistar; Sitosterols; Solubility; Stigmasterol; Triolein

2006
Rapid quantification of free and esterified phytosterols in human serum using APPI-LC-MS/MS.
    Journal of lipid research, 2005, Volume: 46, Issue:1

    A novel analytical platform based on liquid chromatography and tandem mass spectrometry using atmospheric pressure photoionization was applied for the simultaneous quantification of free and esterified beta-sitosterol, campesterol, brassicasterol, and stigmasterol. The total time for sample pretreatment and analysis could be reduced from approximately 3 h [gas chromatography-mass spectrometry (GC-MS)] to 15 min. The detection limits of the different phytosterols ranged between 0.25 and 0.68 microg/l. Linear ranges were between 1 and 1,000 microg/l. The within-run and between-run variabilities ranged between 1.4% and 9.9%. The analytical sensitivity was at least 150-fold higher compared with GC-MS. Our new method allows a rapid and simultaneous determination of free and esterified phytosterols in serum.

    Topics: Cholestadienols; Cholesterol; Chromatography, Liquid; Esters; Humans; Mass Spectrometry; Methods; Phytosterols; Reproducibility of Results; Sitosterols; Stigmasterol

2005
Margarine phytosterols decrease the secretion of atherogenic lipoproteins from HepG2 liver and Caco2 intestinal cells.
    Atherosclerosis, 2005, Volume: 182, Issue:1

    Several studies in humans have demonstrated the hypocholesterolemic effect of plant sterol consumption. It is unclear whether plant sterols regulate lipoprotein metabolism in the liver and intestines, thereby decreasing the levels of circulating atherogenic lipoproteins. We investigated the effect of the three main phytosterols: stigmasterol, campesterol, and beta-sitosterol on lipoprotein production in HepG2 human liver cells and Caco2 human intestinal cells and the mechanisms involved. Cells were incubated for 24h with 50 micromol/L of the different phytosterols or 10 micromol/L of atorvastatin. Very low-density lipoprotein levels (measured by apolipoprotein (apo) B100) in HepG2 cells and chylomicron levels (measured by apoB48) in Caco2 cells were measured using western blotting. Intracellular cholesterol levels were measured using gas chromatography. Analysis was carried out using Student's t-test and ANOVA. Secretion levels of apoB100 significantly decreased by approximately 30% after incubation with all phytosterols compared to control. In addition, cholesterol ester (CE) concentrations significantly decreased when HepG2 cells were incubated with the phytosterols compared to control cells. Secretion of apoB48 from intestinal cells significantly decreased by 15% with stigmasterol, 16% with campesterol and 19% beta-sitosterol compared to control. Collectively the data suggests that plant sterols limit lipid (CE) availability in cells. Decreases in circulating levels of LDL and chylomicron remnants seen in humans with the consumption of margarine phytosterols are possibly due to their effect on lipid production in cells and would therefore reduce the risk of developing cardiovascular disease.

    Topics: Anticholesteremic Agents; Apolipoprotein B-100; Apolipoprotein B-48; Apolipoproteins B; Atherosclerosis; Atorvastatin; Caco-2 Cells; Carcinoma, Hepatocellular; Cholesterol; Drug Synergism; Enterocytes; Hepatocytes; Heptanoic Acids; Humans; Liver Neoplasms; Margarine; Phytosterols; Pyrroles; Sitosterols; Stigmasterol

2005
Levels of phytosterol oxides in enriched and nonenriched spreads: application of a thin-layer chromatography-gas chromatography methodology.
    Journal of agricultural and food chemistry, 2005, Oct-05, Volume: 53, Issue:20

    The content of phytosterol oxidation products (POPs) in enriched and nonenriched commercial spreads was evaluated by thin-layer chromatography-gas chromatography (TLC-GC). Oxides of beta-sitosterol, campesterol, and stigmasterol were produced by thermo-oxidation (7-hydroxy, 7-keto, and epoxy derivatives) and chemical synthesis (triol derivatives), which were then separated and identified by TLC-GC. Their identification was further confirmed by GC-mass spectrometry (GC-MS). The total amounts of phytosterols found were 6.07 and 0.33 g/100 g of sample in phytosterol-enriched and nonenriched spread, respectively, whereas the total POPs contents were 45.60 and 13.31 mg/kg of sample in the enriched and nonenriched products. The main POPs found were the 7-keto derivatives of all phytosterols analyzed; 7-ketositosterol was the most abundant one (14.96 and 5.93 mg/kg of sample in phytosterol-enriched and nonenriched spread). No beta-epoxy and triol derivatives were detected in both types of samples. The enriched spread presented a lower phytosterol oxidation rate (0.07%) than the nonenriched one (0.41%).

    Topics: Cholesterol; Chromatography, Gas; Chromatography, Thin Layer; Food Analysis; Food, Fortified; Margarine; Oxidation-Reduction; Oxides; Phytosterols; Sitosterols; Stigmasterol

2005
Lipid rafts in higher plant cells: purification and characterization of Triton X-100-insoluble microdomains from tobacco plasma membrane.
    The Journal of biological chemistry, 2004, Aug-27, Volume: 279, Issue:35

    A large body of evidence from the past decade supports the existence of functional microdomains in membranes of animal and yeast cells, which play important roles in protein sorting, signal transduction, or infection by pathogens. They are based on the dynamic clustering of sphingolipids and cholesterol or ergosterol and are characterized by their insolubility, at low temperature, in nonionic detergents. Here we show that similar microdomains also exist in plant plasma membrane isolated from both tobacco leaves and BY2 cells. Tobacco lipid rafts were found to be greatly enriched in a sphingolipid, identified as glycosylceramide, as well as in a mixture of stigmasterol, sitosterol, 24-methylcholesterol, and cholesterol. Phospho- and glycoglycerolipids of the plasma membrane were largely excluded from lipid rafts. Membrane proteins were separated by one- and two-dimensional gel electrophoresis and identified by tandem mass spectrometry or use of specific antibody. The data clearly indicate that tobacco microdomains are able to recruit a specific set of the plasma membrane proteins and exclude others. We demonstrate the recruitment of the NADPH oxidase after elicitation by cryptogein and the presence of the small G protein NtRac5, a negative regulator of NADPH oxidase, in lipid rafts.

    Topics: Blotting, Western; Cell Membrane; Centrifugation, Density Gradient; Cholesterol; Chromatography, High Pressure Liquid; Chromatography, Thin Layer; Detergents; Electrophoresis, Gel, Two-Dimensional; Electrophoresis, Polyacrylamide Gel; Ergosterol; Ions; Lipid Metabolism; Lipids; Mass Spectrometry; Membrane Microdomains; Microscopy, Electron; NADPH Oxidases; Nicotiana; Octoxynol; Phytosterols; Plant Leaves; Protein Structure, Tertiary; Signal Transduction; Sitosterols; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization; Stigmasterol; Sucrose; Temperature

2004
Analysis of plant sterol and stanol esters in cholesterol-lowering spreads and beverages using high-performance liquid chromatography-atmospheric pressure chemical ionization-mass spectroscopy.
    Journal of agricultural and food chemistry, 2003, Sep-10, Volume: 51, Issue:19

    Plant sterol and stanol esters were separated on a Luna hexyl-phenyl column using a gradient of acetonitrile (90-100%) in water. The eluted compounds were detected by atmospheric pressure chemical ionization (APCI)-mass spectroscopy (MS) in the positive mode. Sterol and stanol esters produced [M + H - HOOCR](+) ions. Application of the hyphenated technique-LC-MS-allowed differentiation between a number of esters of sitosterol, campesterol, stigmasterol, and (tentatively) avenasterol, as well as sitostanol and campestanol esters. With cholesteryl decanoate used as the internal standard, the method showed good linearity, precision, and reproducibility. The method required minimal sample pretreatment and can be applied to samples with high water content (juices) as well as samples with high oil content (margarine spreads). The method could be useful for the analysis of sterol and stanol esters in fortified food products.

    Topics: Anticholesteremic Agents; Beverages; Cholesterol; Chromatography, High Pressure Liquid; Citrus; Esters; Fruit; Margarine; Mass Spectrometry; Phytosterols; Sensitivity and Specificity; Sitosterols; Stigmasterol

2003
Antioxidant effects of phytosterol and its components.
    Journal of nutritional science and vitaminology, 2003, Volume: 49, Issue:4

    Phytosterol contained in vegetable oils is known to exert a hypocholesterolemic function. In the present study, the antioxidant effects of phytosterol and its components, beta-sitosterol, stigmasterol, and campesterol, against lipid peroxidation were examined by making a comparison with 2,2,5,7,8-pentamethyl-6-chromanol (PMC). It was found that these compounds exerted antioxidant effects on the oxidation of methyl linoleate in solution and its effect decreased in the order of: PMC >> phytosterol approximately campesterol approximately beta-sitosterol > stigmasterol. Phytosterol also suppressed the oxidation and consumption of alpha-tocopherol in beta-linoleoyl-gamma-palmitoyl phosphatidylcholine (PLPC) liposomal membranes, the effects being more significant than dimyristoyl PC of the same concentration. Stigmasterol accelerated the oxidation of both methyl linoleate in solution and PLPC liposomal membranes in aqueous dispersions, which was ascribed to the oxidation of allylic hydrogens at the 21- and 24-positions. Taken together, the present study shows that phytosterol chemically acts as an antioxidant, a modest radical scavenger, and physically as a stabilizer in the membranes.

    Topics: Anticholesteremic Agents; Antioxidants; Cholesterol; Chromans; Free Radical Scavengers; Lipid Peroxidation; Liposomes; Membranes, Artificial; Oxidation-Reduction; Phytosterols; Sitosterols; Stigmasterol

2003
Amaranth as a rich dietary source of beta-sitosterol and other phytosterols.
    Plant foods for human nutrition (Dordrecht, Netherlands), 2003, Volume: 58, Issue:3

    The analysis of 4 commonly available amaranth varieties (Amaranthus K343, RRC1011, K433, K432) revealed the presence of all three major phytosterols (beta-sitosterol, campesterol, stigmas-terol) with a total sterol content being several fold higher than those found in other studied plants. Substantial differences in total phytosterol content and beta-sitosterol content were found between the amaranth varieties. The most commonly cultivated amaranth variety in the United States, i.e., Amaranthus K343 was found to possess the highest levels of phytosterols of the varieties tested. The possibility of screening for superior amaranth varieties with various health properties is outlined.

    Topics: Amaranthus; Cholesterol; Food, Organic; Nutritive Value; Phytosterols; Sitosterols; Stigmasterol

2003
Isolation of various forms of sterol beta-D-glucoside from the seed of Cycas circinalis: neurotoxicity and implications for ALS-parkinsonism dementia complex.
    Journal of neurochemistry, 2002, Volume: 82, Issue:3

    The factors responsible for ALS-parkinsonism dementia complex (ALS-PDC), the unique neurological disorder of Guam, remain unresolved, but identification of causal factors could lead to clues for related neurodegenerative disorders elsewhere. Earlier studies focused on the consumption and toxicity of the seed of Cycas circinalis, a traditional staple of the indigenous diet, but found no convincing evidence for toxin-linked neurodegeneration. We have reassessed the issue in a series of in vitro bioassays designed to isolate non-water soluble compounds from washed cycad flour and have identified three sterol beta-d-glucosides as potential neurotoxins. These compounds give depolarizing field potentials in cortical slices, induce alterations in the activity of specific protein kinases, and cause release of glutamate. They are also highly toxic, leading to release of lactate dehydrogenase (LDH). Theaglycone form, however, is non-toxic. NMDA receptor antagonists block the actions of the sterol glucosides, but do not compete for binding to the NMDA receptor. The most probable mechanism leading to cell death may involve glutamate neuro/excitotoxicity. Mice fed cycad seed flour containing the isolated sterol glucosides show behavioral and neuropathological outcomes, including increased TdT-mediated biotin-dUTP nick-end labelling (TUNEL) positivity in various CNS regions. Astrocytes in culture showed increased caspase-3 labeling after exposure to sterol glucosides. The present results support the hypothesis that cycad consumption may be an important factor in the etiology of ALS-PDC and further suggest that some sterol glucosides may be involved in other neurodegenerative disorders.

    Topics: Amyotrophic Lateral Sclerosis; Animals; Astrocytes; Biological Assay; Cells, Cultured; Cerebral Cortex; Cholesterol; Cycas; Dementia; Glucose; Glucosides; Guam; Humans; In Vitro Techniques; Male; Mice; Neurons; Neurotoxins; Parkinsonian Disorders; Patch-Clamp Techniques; Phytosterols; Plant Extracts; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Seeds; Sitosterols; Stigmasterol

2002
Sterol C-24 methyltransferase type 1 controls the flux of carbon into sterol biosynthesis in tobacco seed.
    Plant physiology, 2002, Volume: 130, Issue:1

    The first committed step in the conversion of cycloartenol into Delta(5) C24-alkyl sterols in plants is catalyzed by an S-adenosyl-methionine-dependent sterol-C24-methyltransferase type 1 (SMT1). We report the consequences of overexpressing SMT1 in tobacco (Nicotiana tabacum), under control of either the constitutive carnation etched ring virus promoter or the seed-specific Brassica napus acyl-carrier protein promoter, on sterol biosynthesis in seed tissue. Overexpression of SMT1 with either promoter increased the amount of total sterols in seed tissue by up to 44%. The sterol composition was also perturbed with levels of sitosterol increased by up to 50% and levels of isofucosterol and campesterol increased by up to 80%, whereas levels of cycloartenol and cholesterol were decreased by up to 53% and 34%, respectively. Concomitant with the enhanced SMT1 activity was an increase in endogenous 3-hydroxy-3-methylglutaryl coenzyme A reductase activity, from which one can speculate that reduced levels of cycloartenol feed back to up-regulate 3-hydroxy-3-methylglutaryl coenzyme A reductase activity and thereby control the carbon flux into sterol biosynthesis. This potential regulatory role of SMT1 in seed sterol biosynthesis is discussed.

    Topics: Biological Transport; Carbon; Cholesterol; Cloning, Molecular; Gene Expression Regulation, Enzymologic; Gene Expression Regulation, Plant; Hydroxymethylglutaryl CoA Reductases; Methyltransferases; Nicotiana; Phytosterols; Plant Leaves; Plants, Genetically Modified; Seeds; Sitosterols; Stigmasterol; Triterpenes

2002
Phytosterol content in American ginseng seed oil.
    Journal of agricultural and food chemistry, 2002, Feb-13, Volume: 50, Issue:4

    North American ginseng (Panax quinquefolium L.) oil was saponifed and the unsaponifiable matter trimethylsilylated. The phytosterol fraction of hexane-extracted, air-dried seed was quantified and identified by GC and GC-MS. Phytosterol contents (milligrams per 100 g of oil) were as follows: squalene (514-569), oxidosqualene (8.97-48.2), campesterol (9.96-12.4), stigmasterol (93.2-113), clerosterol (1.91-2.14), beta-sitosterol (153-186), beta-amyrin (11.7-19.5), delta(5)-avenasterol (12.4-20.5), delta(5,24(25))-stigmasterol (3.70-.76), lupeol (14.4-15.2), delta(7)-sitosterol (12.5-14.6), delta(7)-avenasterol (4.11-8.09), 24-methylenecycloartanol (1.94-4.76), and citrostadienol (2.50-3.81). Seed stratification lowered the phytosterol levels. Oven-drying gave mixed results, and phytosterols varied slightly between the 1999 and 2000 harvests.

    Topics: Cholesterol; Chromatography, Gas; Gas Chromatography-Mass Spectrometry; Oleanolic Acid; Panax; Phytosterols; Plant Oils; Seeds; Sitosterols; Squalene; Stigmasterol; Triterpenes

2002
Classification and class-modeling of "Riviera Ligure" extra-virgin olive oil using chemical-physical parameters.
    Journal of agricultural and food chemistry, 2002, Apr-10, Volume: 50, Issue:8

    The Protected Designation of Origin (PDO) "Riviera Ligure" for extra-virgin olive oils from Liguria specifies three additional geographical mentions corresponding to three different geographical areas. To obtain a complete characterization of this typical Italian product, 217 samples of olive oils produced in this North Italian region during 1998/99 and 1999/2000 were analyzed. For each sample 31 variables were determined by chemical-physical analyses, and the data were subjected to a multivariate statistical analysis. For the 1998/99 crop, characterized by favorable climatic conditions, class-models of the three geographical areas were obtained with good predictive ability, also considering the influence of the month of olive harvesting. The oil samples from the 1999/2000 crop were similarly studied, but bad climatic conditions and a widespread Dacus oleae infestation leveled out the peculiar features of the oils produced in the three areas.

    Topics: Agriculture; Analysis of Variance; Cholesterol; Climate; Hydrogen-Ion Concentration; Italy; Linoleic Acid; Oleic Acid; Olive Oil; Palmitic Acid; Phytosterols; Plant Oils; Stigmasterol

2002
Fate of intravenously administered squalene and plant sterols in human subjects.
    Journal of lipid research, 2001, Volume: 42, Issue:6

    We have studied metabolism of plant sterols and squalene administered intravenously in the form of lipid emulsion mimicking chylomicrons (CM). The CM-like lipid emulsion was prepared by dissolving squalene in commercially available Intralipid. The emulsion was given as an intravenous bolus injection of 30 ml containing 6.3 mg of cholesterol, 1.9 mg of campesterol, 5.7 mg of sitosterol, 1.6 mg of stigmasterol, 18.1 mg of squalene, and 6 g of triglycerides in six healthy volunteers. Blood samples were drawn from the opposite arm before and serially 2.5 -180 min after the injections. The decay of CM squalene, plant sterols, and triglycerides was monoexponential. The half-life of CM squalene was 74 +/- 8 min, that of campesterol was 37 +/- 5 min (P < 0.01 from squalene), and those of sitosterol, stigmasterol, and triglycerides were 17 +/- 2, 15 +/- 1, and 17 +/- 2 min, respectively (P < 0.01 from squalene and campesterol). The CM squalene concentration still exceeded the baseline level 180 min after injection (P = 0.02), whereas plant sterols and triglycerides returned to the baseline level between 45 and 120 min after injection. The half-lives of squalene and campesterol were positively correlated with their fasting CM concentrations. In addition, VLDL squalene, campesterol, and triglyceride concentrations, VLDL, LDL, and HDL sitosterol concentrations, as well as VLDL and LDL stigmasterol concentrations were increased significantly. Cholesterol concentrations increased in VLDL (P < 0.05), but were unchanged in CM after injection. These data suggest that squalene clearance occurs more slowly than that of plant sterols and triglycerides from CM, and that squalene is more tightly associated with triglyceride-rich lipoproteins than are plant sterols in injected CM-like emulsions.

    Topics: Adult; Cholesterol; Humans; Hypolipidemic Agents; Lipoproteins, HDL; Lipoproteins, LDL; Lipoproteins, VLDL; Male; Middle Aged; Phytosterols; Postprandial Period; Sitosterols; Squalene; Stigmasterol; Time Factors; Triglycerides

2001
Plant sterol intakes and colorectal cancer risk in the Netherlands Cohort Study on Diet and Cancer.
    The American journal of clinical nutrition, 2001, Volume: 74, Issue:1

    Plant sterols in vegetable foods might prevent colorectal cancer.. The objective was to study plant sterol intakes in relation to colorectal cancer risk in an epidemiologic study.. The study was performed within the framework of the Netherlands Cohort Study on Diet and Cancer in 120852 subjects who completed a baseline questionnaire in 1986. After 6.3 y of follow-up, 620 colon and 344 rectal cancer cases were detected. A case-cohort approach was used to calculate confounder-adjusted rate ratios (RRs) and their 95% CIs for quintiles of plant sterol intake.. The total mean (+/-SD) intake of campesterol, stigmasterol, beta-sitosterol, campestanol, and beta-sitostanol was 285 +/- 97 mg/d. Major contributors to plant sterol intake were bread (38%), vegetable fats (26%), and fruit and vegetables (21%). For men, there was no clear association between intake of any of the plant sterols and colon cancer risk when age, smoking, alcohol use, family history of colorectal cancer, education level, and cholecystectomy were controlled for. Adjustment for energy did not alter the result. For rectal cancer, adjustment for energy resulted in positive associations between risk and campesterol and stigmasterol intakes. For women, there was no clear association between intake of any of the plant sterols and colorectal cancer risk.. A high dietary intake of plant sterols was not associated with a lower risk of colon and rectal cancers in the Netherlands Cohort Study on Diet and Cancer.

    Topics: Aged; Bread; Case-Control Studies; Cholesterol; Cohort Studies; Colorectal Neoplasms; Confounding Factors, Epidemiologic; Dietary Fats; Female; Follow-Up Studies; Fruit; Humans; Hypolipidemic Agents; Male; Middle Aged; Netherlands; Phytosterols; Prospective Studies; Rectal Neoplasms; Risk Factors; Sitosterols; Stigmasterol; Surveys and Questionnaires; Vegetables

2001
The safety evaluation of phytosterol esters. Part 6. The comparative absorption and tissue distribution of phytosterols in the rat.
    Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 2000, Volume: 38, Issue:6

    As part of an extensive safety evaluation programme, a series of studies has been conducted to determine the fate of phytosterols in the rat. Rats were dosed by oral gavage with 14C-labelled samples of cholesterol, beta-sitosterol or beta-sitostanol or (3)H-labelled samples of beta-sitostanol, campesterol, campestanol or stigmasterol dissolved in sunflower seed oil. Urine and faeces were collected for up to 96 hours after dosing. There was no quantification of biliary excreted material in these studies. Animals were sacrificed and either prepared for whole body autoradiography or tissues and carcass remains were assayed for 14C or (3)H. The overall absorption of phytosterols was low as judged by tissue and carcass levels of radioactivity. Elimination from the body was mainly in the faeces and was initially very rapid, but traces of material were still being excreted at 4 days after dosing. While total absorption of the phytosterols could not be fully quantified without biliary excretion data, it was clear that cholesterol was absorbed to the greatest extent (27% of the dose in females at 24 hours). Campesterol (13%) was absorbed more than beta-sitosterol and stigmasterol (both 4%) which were absorbed more than beta-sitostanol and campestanol (1-2%). The absorption of phytosterols was slightly greater in females than males. For each test material, the overall pattern of tissue distribution of radioactivity was similar, with the adrenal glands, ovaries and intestinal epithelia showing the highest levels and the longest retention of radioactivity.

    Topics: Animals; Autoradiography; Cholesterol; Female; Intestinal Absorption; Male; Phytosterols; Rats; Sitosterols; Stigmasterol; Tissue Distribution

2000
Safety evaluation of phytosterol esters. Part 1. Assessment of oestrogenicity using a combination of in vivo and in vitro assays.
    Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 1999, Volume: 37, Issue:1

    Phytosterols are natural constituents of the human diet, and as part of an extensive programme of safety evaluation studies investigating their use as a novel food ingredient, the possible oestrogenic effects of phytosterols have been investigated using a combination of in vitro and in vivo assays. Competitive binding with the immature rat uterine oestrogen receptor (ER) has been used to measure the ability of phytosterols to bind to ERs while the transcriptional activation of oestrogen-responsive genes has been examined in an oestrogen-inducible yeast screen. Phytosterols did not display any activity in these in vitro assays. Uterotrophic assays have been conducted to investigate the potential for phytosterols to elicit an oestrogenic response when administered orally to immature female rats (n = 10) at doses of 0, 5, 50 or 500 mg/kg/day for 3 consecutive days. Phytosterols (a well characterized mixture of beta-sitosterol, campesterol and stigmasterol) and phytosterol esters (the previous phytosterol mixture esterified with fatty acids from sunflower oil) did not exhibit oestrogenic activity in the immature female rat using uterine wet weight as the endpoint. Beta-oestradiol (0.4 mg/kg/day) consistently produced a significant increase in uterus weights. Coumestrol (a known phytoestrogen) was also tested as a weak positive control and produced a dose response at doses of 20, 40 and 80 mg/kg/day in the uterotrophic assay. In conclusion, we have shown that phytosterols do not bind to the ER and do not stimulate transcriptional activity of the human ER in a recombinant yeast strain. In addition, there was no indication of oestrogenicity from the uterotrophic assay when the material was administered by oral gavage to immature female rats.

    Topics: Administration, Oral; Animals; Binding, Competitive; Cholesterol; Coumestrol; Dose-Response Relationship, Drug; Esters; Estradiol; Estrogens, Non-Steroidal; Female; Organ Size; Phytosterols; Rats; Rats, Wistar; Receptors, Estrogen; Saccharomyces cerevisiae; Sitosterols; Stigmasterol; Uterus

1999
Phytoestrogen intake and prostate cancer: a case-control study using a new database.
    Nutrition and cancer, 1999, Volume: 33, Issue:1

    In the last several years, attention has been focused on comparing the Western diet, which is rich in fat, protein, and refined carbohydrates, with the Asian diet, which is rich in phytoestrogens, as a possible explanation for the contrasting rates of clinically relevant prostate cancer. Phytoestrogens, plant-derived nutrients, include several isoflavones, flavonoids, lignans, phytosterols, and coumestans, some of which have been postulated as having anticarcinogenic properties. Using a new database, we examined the role of phytoestrogen intake and prostate cancer risk in 83 Caucasian cases and 107 controls. Controls reported consuming higher amounts of foods containing genistein, daidzein, and coumestrol and lower amounts of foods containing campesterol and stigmasterol. Multivariate analysis, after adjustment for age, family history of prostate cancer, alcohol consumption, and total calorie intake, showed an inverse association between coumestrol (p = 0.03) and daidzein (p = 0.07) and prostate cancer risk. Genistein, the most studied phytoestrogen, showed a slight protective effect (p = 0.26). However, a positive association was found between campesterol (p = 0.08) and stigmasterol (p = 0.03) and risk of prostate cancer. These results are suggestive of a possible relationship between phytoestrogen intake and prostate cancer risk. Larger comprehensive studies are needed to further refine the role of phytoestrogen intake in prostate cancer risk.

    Topics: Anticarcinogenic Agents; Case-Control Studies; Cholesterol; Databases, Factual; Diet Records; Estrogens, Non-Steroidal; Genistein; Humans; Isoflavones; Male; Middle Aged; Multivariate Analysis; Nutrition Assessment; Phytoestrogens; Phytosterols; Plant Preparations; Prostatic Neoplasms; Risk Factors; Stigmasterol; Surveys and Questionnaires; Texas

1999
Mass spectrometry characterization of the 5alpha-, 7alpha-, and 7beta-hydroxy derivatives of beta-sitosterol, campesterol, stigmasterol, and brassicasterol.
    Journal of agricultural and food chemistry, 1999, Volume: 47, Issue:8

    The 5alpha-hydroperoxides of beta-sitosterol, campesterol, stigmasterol, and brassicasterol were obtained by photooxidation of the respective sterols in pyridine in the presence of hematoporphyrine as sensitizer. The reduction of the hydroperoxides gives the corresponding 5alpha-hydroxy derivatives. The 7alpha- and 7beta-hydroperoxides of the sterols were obtained by allowing an aliquot of the 5alpha-hydroperoxides to isomerize to 7alpha-hydroperoxides, which in turn epimerize to 7beta-hydroperoxides. The reduction gave the corresponding 7alpha- and 7beta-hydroxy derivatives. The 5alpha-, 7alpha-, and 7beta-hydroxy derivatives of beta-sitosterol, campesterol, stigmasterol, and brassicasterol were identified by comparing thin-layer chromatography mobilities, specific color reactions, and mass spectral data with those of the corresponding hydroxy derivatives of cholesterol, which were synthesized in the same manner. The phytosterols had the same behavior to photooxidation as cholesterol and, moreover, the different phytosterols photooxidized at about the same rate. The mass spectra of the trimethylsilyl ethers of the hydroxy derivatives of the phytosterols investigated and of the corresponding hydroxy derivatives of cholesterol have the same fragmentation patterns and similar relative ion abundances.

    Topics: Cholestadienols; Cholesterol; Gas Chromatography-Mass Spectrometry; Hydroxylation; Mass Spectrometry; Peroxides; Phytosterols; Sitosterols; Stigmasterol

1999
Analysis of fecal bile acids and neutral steroids using gas-liquid chromatography.
    Annals of nutrition & metabolism, 1998, Volume: 42, Issue:4

    In the present pilot study, for investigating the physiological effects of different types of nondigestible oligosaccharides, we have validated the application of methodologies for the analysis of bile acids and neutral steroids in feces of human subjects. The accuracy of the extraction and chromatographic procedures for the analyses of bile acids and neutral steroids was determined by recovery of added compounds to fecal homogenate. The precision of the above procedures was checked by analyzing these compounds in samples (n = 5) of the same fecal homogenate. Recoveries of added bile acids ranged from 86 and 96%, and those of neutral steroids varied from 81 to 97%. The precision expressed as coefficients of variation of bile acids and neutral steroids ranged from 2.3 to 8.3% and from 6.3 to 11.8%, respectively. The intra- and interindividual variabilities expressed as coefficients of variation of bile acids varied from 1 to 58 and from 0 to 74%, respectively. The same variabilities for neutral steroids ranged from 0.5 to 107% and from 1 to 168%, respectively. The methods validated in the present pilot study were adequate for applying to our forthcoming European Union coordinated major study on the physiological effects of different types of nondigestible oligosaccharides and involving large numbers of samples.

    Topics: Bile Acids and Salts; Cholestanol; Cholesterol; Chromatography, Gas; Feces; Humans; Phytosterols; Sensitivity and Specificity; Sitosterols; Steroids; Stigmasterol

1998
The Arabidopsis DIMINUTO/DWARF1 gene encodes a protein involved in steroid synthesis.
    The Plant cell, 1998, Volume: 10, Issue:10

    We have identified the function of the Arabidopsis DIMINUTO/DWARF1 (DIM/DWF1) gene by analyzing the dim mutant, a severe dwarf with greatly reduced fertility. Both the mutant phenotype and gene expression could be rescued by the addition of exogenous brassinolide. Analysis of endogenous sterols demonstrated that dim accumulates 24-methylenecholesterol but is deficient in campesterol, an early precursor of brassinolide. In addition, we show that dim is deficient in brassinosteroids as well. Feeding experiments using deuterium-labeled 24-methylenecholesterol and 24-methyldesmosterol confirmed that DIM/DWF1 is involved in both the isomerization and reduction of the Delta24(28) bond. This conversion is not required in cholesterol biosynthesis in animals but is a key step in the biosynthesis of plant sterols. Transient expression of a green fluorescent protein-DIM/DWF1 fusion protein and biochemical experiments showed that DIM/DWF1 is an integral membrane protein that most probably is associated with the endoplasmic reticulum.

    Topics: Amino Acid Sequence; Arabidopsis; Arabidopsis Proteins; Base Sequence; Brassinosteroids; Cholestanols; Cholesterol; DNA, Plant; Gene Expression Regulation, Plant; Genes, Plant; Membrane Proteins; Molecular Sequence Data; Mutation; Phenotype; Phytosterols; Plant Growth Regulators; Plant Proteins; RNA, Messenger; RNA, Plant; Sequence Homology, Amino Acid; Steroids; Steroids, Heterocyclic; Stigmasterol

1998
Effect of micellar beta-sitosterol on cholesterol metabolism in CaCo-2 cells.
    Journal of lipid research, 1997, Volume: 38, Issue:2

    CaCo-2 cells were used to address the effect of the plant sterol, beta-sitosterol, on cholesterol trafficking, cholesterol metabolism, and apoB secretion. Compared to cells incubated with micelles (5 mM taurocholate and 250 microM oleic acid) containing cholesterol, which caused an increase in the influx of plasma membrane cholesterol to the endoplasmic reticulum and increased the secretion of cholesteryl esters derived from the plasma membrane, beta-sitosterol did not alter cholesterol trafficking or cholesteryl ester secretion. Including beta-sitosterol in the micelle together with cholesterol attenuated the influx of plasma membrane cholesterol and prevented the secretion of cholesteryl esters derived from the plasma membrane. Stigmasterol and campesterol had effects similar to beta-sitosterol, although campesterol did not promote a modest influx of plasma membrane cholesterol. Including beta-sitosterol in the micelle with cholesterol decreased the uptake of cholesterol. Compared to cholesterol, 60% less beta-sitosterol was taken up by CaCo-2 cells. No observable esterification of beta-sitosterol was appreciated and the transport of the plant sterol to the basolateral medium was negligible. Cholesterol synthesis and HMG-CoA reductase activities were decreased in cells incubated with beta-sitosterol. This was associated with a decrease in reductase mass and mRNA levels. Cholesteryl ester synthesis and ACAT activities were unaltered by beta-sitosterol. Both stigmasterol and campesterol decreased reductase activity, but only campesterol increased ACAT activity. beta-sitosterol did not affect the secretion of apoB mass. The results suggest that beta-sitosterol does not promote cholesterol trafficking from the plasma membrane to the endoplasmic reticulum. beta-sitosterol interferes with the uptake of micellar cholesterol causing less plasma membrane cholesterol to influx and less cholesteryl ester to be secreted. Despite its lack of effect on cholesterol trafficking, beta-sitosterol decreases cholesterol synthesis at the level of HMG-CoA reductase gene expression.

    Topics: Caco-2 Cells; Cell Membrane; Cholesterol; Cholesterol Esters; Esterification; Humans; Hydroxymethylglutaryl CoA Reductases; Intestinal Mucosa; Intestines; Micelles; Oleic Acid; Phytosterols; Sitosterols; Sterol O-Acyltransferase; Stigmasterol; Taurocholic Acid; Time Factors

1997
Quantitative study of local distribution of noncholesterol sterols and cholesterol in gallstones.
    Journal of gastroenterology, 1994, Volume: 29, Issue:3

    Quantitative analysis of the local distribution of four noncholesterol sterols, 24-methylene cholesterol, campesterol, stigmasterol, and beta-sitosterol, and of the local distribution of cholesterol in gallstones was performed by mass spectrometry, with D6-cholesterol as an internal standard. The role played by trace amounts of these four noncholesterol sterols in the formation of gallstones was investigated by comparing the amounts of these sterols in different parts of gallstones. It was found that the amounts of the noncholesterol sterols in the inside part were significant greater than the amounts in the outside part of various structural types of gallstones. However, the distribution of the cholesterol did not show such variation. The amounts of noncholesterol sterols distributed locally suggested that these sterols play a role in the formation of gallstones.

    Topics: Cholelithiasis; Cholesterol; Female; Gas Chromatography-Mass Spectrometry; Humans; Male; Middle Aged; Phytosterols; Sitosterols; Sterols; Stigmasterol

1994
Simplified gas chromatographic method for the simultaneous determination of phytosterols and cholesterol.
    Journal of chromatography, 1991, Jan-18, Volume: 563, Issue:1

    Topics: Cholesterol; Chromatography, Gas; Food, Fortified; Humans; Phytosterols; Sitosterols; Stigmasterol

1991
Soybean phosphatidylcholine vesicles containing plant sterols: a fluorescence anisotropy study.
    Biochimica et biophysica acta, 1990, Sep-21, Volume: 1028, Issue:1

    The typical plant sterols (sitosterol, stigmasterol and campesterol) were compared with respect to their ability to regulate membrane fluidity of soybean phosphatidylcholine (PC) vesicles. Fluidity changes were monitored by the steady-state fluorescence anisotropy with 1,6-diphenyl-1,3,5-hexatriene as a probe and assigned to a measure of the acyl chain orientational order. Sitosterol and campesterol appear to be the most suitable sterols in ordering the acyl chains of soybean lecithin bilayers, even more efficient than cholesterol, the standard of reference for sterol effects on membranes, suggesting that they play a significant role in the regulation of plant membrane properties. Stigmasterol is shown to be much less active. Cycloartenol, a biosynthetic precursor of plant sterols, increases the acyl chain order with the same efficiency as cholesterol. We also investigated the effects of two unusual sterols, 24-methylpollinastanol and 14 alpha,24-dimethylcholest-8-en-3 beta-ol, which were shown to accumulate in plants treated with fungicides belonging to two important classes, N-substituted morpholines and triazoles, respectively. These two sterols exhibit a behavior very similar to that of stigmasterol. The results are discussed in terms of sterol effects on the molecular packing of soybean PC bilayers.

    Topics: Cholesterol; Fluorescence Polarization; Fluorescent Dyes; Glycine max; Lipid Bilayers; Liposomes; Membrane Fluidity; Phosphatidylcholines; Phytosterols; Sitosterols; Solubility; Stigmasterol

1990
Sterol synergism in Paramecium tetraurelia.
    Journal of general microbiology, 1988, Volume: 134, Issue:6

    Paramecium tetraurelia is a naturally occurring sterol auxotroph with an absolute nutritional requirement for one of a small group of structurally related phytosterols. We report here a quantitative study demonstrating that a low, otherwise sub-supportive, concentration (approximately 0.020-0.050 micrograms ml-1) of an essential phytosterol (stigmasterol) is adequate for growth of this ciliate, provided that a second, relatively non-specific sterol is available at a higher concentration (1.0 micrograms ml-1) to allow for membrane biosynthesis. This phenomenon, referred to as sterol synergism, has been observed in a broad taxonomic range of organisms, with the conclusion that small amounts of specific sterols are required to perform some previously unknown, vital metabolic or regulatory function. Paramecium promises to be an excellent model organism for the elucidation of essential sterol function.

    Topics: Animals; Cholesterol; Culture Media; Drug Synergism; Ergosterol; Paramecium; Phytosterols; Sterols; Stigmasterol; Triterpenes

1988
Schistosoma mansoni: sterol and phospholipid composition of cercariae, schistosomula, and adults.
    Experimental parasitology, 1988, Volume: 65, Issue:2

    The sterol and phospholipid composition of cercariae, schistosomula, and adult Schistosoma mansoni was analyzed by gas-liquid chromatography and high-performance liquid chromatography (HPLC). Cercariae and schistosomula contained cholesterol, desmosterol, campesterol, stigmasterol, and beta-sitosterol while adults contained only cholesterol. In all stages cholesterol comprised greater than 50% of the total sterols, and in cercariae and schistosomula desmosterol comprised 38 and 21% of the total sterols, respectively. The other three sterols, campesterol, stigmasterol, and beta-sitosterol, made up approximately 10% of the total. The same five sterols found in cercariae and schistosomula were present in the hepatopancreas of uninfected snails but with a much higher desmosterol concentration in the parasite, 38%, than in the snail, 2%. As in cercariae and schistosomula the three minor sterols comprised approximately 10%. Thus, the sterol composition of cercariae and schistosomula was similar but not identical to that of the snail host. Phosphatidylcholine was the major phospholipid of all three stages (50%) as determined by two HPLC procedures. The remaining phospholipids consisted of phosphatidylethanolamine, phosphatidylserine, and phosphatidylinositol. In addition, in adults there were small quantities of sphingomyelin and lysophosphatidylcholine. The percentage of each phospholipid was similar among stages with the exception of a slight increase in phosphatidylserine in adults compared to cercariae and schistosomula. These results show that a characteristic lipid composition is found in cercariae, schistosomula, and adults.

    Topics: Animals; Cholesterol; Chromatography, Gas; Chromatography, High Pressure Liquid; Desmosterol; Phosphatidylcholines; Phosphatidylethanolamines; Phosphatidylinositols; Phosphatidylserines; Phospholipids; Phytosterols; Schistosoma mansoni; Sitosterols; Sterols; Stigmasterol

1988
Inhaled tobacco sterols: uptake by the lungs and disposition to selected organs of rats.
    The Journal of laboratory and clinical medicine, 1988, Volume: 112, Issue:2

    Tobacco sterols (cholesterol, beta-sitosterol, campesterol, and stigmasterol) are present in tobacco smoke and appear in plasma of mammals exposed to cigarette smoke. Because tobacco sterols may be important in the pathogenesis of smoking-induced lung and vascular diseases, we studied the pattern of deposition of cigarette sterols in the lungs and appearance of cigarette sterols in plasma and body organs of rats. After exposure to twenty 5 ml "puffs" of smoke from tobacco labeled with [4-14C]cholesterol or beta-[4-14C]sitosterol, rats were killed just after exposure (day 0) and on days 2, 5, 8, 11, 15, and 30, and the lungs and selected body organs analyzed for activity. We found that cigarette sterols are associated with particulates in cigarette smoke, deposited mostly in distal airspaces and parenchyma of the lungs, and appear in plasma and several body organs for more than 30 days after this single exposure to cigarette smoke. Bronchoalveolar lavage fluid contained relatively small amounts of radiolabel for only the first few days, suggesting that most of the sterols were rapidly incorporated in lung parenchyma. Because disorders of sterol metabolism have been implicated in a variety of diseases including atherosclerosis and cancer, the significance of tobacco sterols to human smoking-induced diseases deserves further study.

    Topics: Animals; Bronchoalveolar Lavage Fluid; Cholesterol; Esophagus; Gastric Mucosa; Kidney; Liver; Lung; Male; Nicotiana; Phytosterols; Plants, Toxic; Rats; Rats, Inbred Strains; Sitosterols; Smoke; Spleen; Sterols; Stigmasterol; Tissue Distribution

1988
Interaction of the polyene antibiotic filipin with model and natural membranes containing plant sterols.
    Biochimica et biophysica acta, 1988, Aug-18, Volume: 943, Issue:2

    The interaction of the polyene antibiotic, filipin, with individual or mixed plant sterols (stigmasterol, sitosterol, campesterol and 24-methylpollinastanol) incorporated into large unilamellar vesicles (LUV) of soybean phosphatidylcholine (PC) as well as the filipin interaction with purified membrane fractions from maize roots containing these sterols was investigated by ultraviolet (UV) absorption and and circular dichroism (CD) spectroscopy. With both types of membrane preparation, dramatic changes in the UV absorption and CD spectra of the antibiotic were evidenced. When LUV containing stigmasterol, sitosterol and/or campesterol were incubated with low filipin concentrations (i.e., for filipin/sterol molar ratios (rst) lower than 1), CD signal characteristic of the formation of filipin-sterol complexes were observed. At higher rst values, the filipin-sterol interaction was shown to be in competition with a filipin-phospholipid interaction. With 24-methylpollinastanol-containing LUV, the filipin-phospholipid interaction was detected even at rst values lower than 1, which suggests a lower affinity of filipin for this sterol and emphasizes the structural differences between delta 5-sterols and 9 beta,19-cyclopropylsterols. With sterol-free soybean PC LUV, a filipin-phospholipid interaction could also be evidenced. With maize root cell membranes containing either delta 5-sterols or 9 beta,19-cyclopropylsterols, CD spectra similar to those obtained in the presence of LUV having these sterols as components were observed. Thus, the protein component of the membranes does not appear to be an important feature.

    Topics: Cell Membrane; Cholestanols; Cholesterol; Circular Dichroism; Filipin; Liposomes; Phytosterols; Plants; Polyenes; Sitosterols; Spectrophotometry, Ultraviolet; Stigmasterol; Zea mays

1988
[Metabolites of Eupatorium cannabinum].
    Bollettino della Societa italiana di biologia sperimentale, 1985, Aug-30, Volume: 61, Issue:8

    Topics: Cholesterol; Chromatography, Gas; Phytosterols; Plants; Sitosterols; Stigmasterol

1985
[Sterols in Stevia rebaudiana Bertoni].
    Bollettino della Societa italiana di biologia sperimentale, 1984, Dec-30, Volume: 60, Issue:12

    The sterol fraction of Stevia rebaudiana Bertoni contains, essentially, the following sterols: stigmasterol (45,8%), beta-sitosterol (39,4%) and campesterol (13,1%). The individual components were separated, after acetylation, by HPLC with absolute methanol as eluant. The identification of the compounds has been carried out through NMR and MS, while the corresponding percentages have been desumed from the GLC data.

    Topics: Cholesterol; Phytosterols; Plants, Medicinal; Sitosterols; Stigmasterol

1984
Sterols from Equisetum arvense.
    Bollettino della Societa italiana di biologia sperimentale, 1984, Dec-30, Volume: 60, Issue:12

    The sterol fraction of Equisetum arvense L. contains, essentially, the following sterols: beta-sitosterol (60.0%), campesterol (32.9%), isofucosterol (5.9%) and cholesterol (trace amounts). The identification of the compounds has been carried out through NMR and MS, while the corresponding percentage have been desumed from the GLC and HPLC data.

    Topics: Cholesterol; Chromatography, Gas; Chromatography, High Pressure Liquid; Magnetic Resonance Spectroscopy; Phytosterols; Plants, Medicinal; Sitosterols; Stigmasterol

1984
Sterol constituents of Tamus communis L.
    Journal of ethnopharmacology, 1983, Volume: 8, Issue:3

    Topics: Cholesterol; Phytosterols; Plants, Medicinal; Sitosterols; Stigmasterol

1983
Effects of plant sterols on cholesterol concentration in the rat small intestine.
    Experientia, 1982, Sep-15, Volume: 38, Issue:9

    Topics: Animals; Cholesterol; Cholesterol Esters; Female; Intestinal Absorption; Intestine, Small; Male; Phytosterols; Rats; Rats, Inbred Strains; Sitosterols; Stigmasterol

1982
Chemical constituents of Vietnamese toad venom collected from Bufo melanostictus Schneider. Part I. The sterols.
    Journal of ethnopharmacology, 1979, Volume: 1, Issue:2

    Topics: Amphibian Venoms; Animals; Bufonidae; Cholestadienols; Cholesterol; Chromatography, Gas; Mass Spectrometry; Phytosterols; Sitosterols; Sterols; Stigmasterol; Vietnam

1979
Absorbability of plant sterols and their distribution in rabbit tissues.
    Biochimica et biophysica acta, 1979, Jul-27, Volume: 574, Issue:1

    Rabbits were fed a low cholesterol diet containing 2% plant sterols for 10 weeks to determine the absorbability of these sterols and their deposition in the tissues. We found campesterol and beta-sitosterol in the blood and tissues. The plasma campesterol levels were 4.34--13.3 mg/100 ml, whereas, beta-sitosterol levels were 0.41--1 mg/100 ml. Stigmasterol was not detected. The total plasma plant sterol concentration was about 10% of the total plasma sterol. The mean terminal plasma cholesterol concentration averaged 60% higher (55 vs. 88 mg/100 ml, P less than 0.001) than the mean initial value. Campesterol was the preponderant sterol in all tissues studied, including the aorta. Sitosterol was found in small amounts in the tissues of the abdominal organs. Stigmasterol was not detected in any tissue studied. Esterified campesterol and sitosterol were detected in trace amounts in most tissues. Campesterol and sitosterol, particularly the former, accumulated in the tissues including the aorta.

    Topics: Animals; Cholesterol; Cholesterol, Dietary; Female; Humans; Phytosterols; Rabbits; Sitosterols; Stigmasterol; Tissue Distribution

1979
Gas-liquid chromatographic determination of cholesterol and other sterols in foods.
    Journal - Association of Official Analytical Chemists, 1977, Volume: 60, Issue:6

    A gas-liquid chromatographic (GLC) method, using the butyryl esters of sterols, has been developed for the measurement of cholesterol, stigmasterol, sitosterol, and campesterol in foods. An immobile phase of 1% SE-30 coated on 100-120 mesh Gas-Chrom Q packed in a 6 inch X 4 mm id glass column operated at 255 degrees C was the most satisfactory of 7 column packings evaluated. Extraction with chloroform-methanol gave 98.7% recovery with a coefficient of variation of 1.8% for cholesterol added to a variety of foods. When cholesteryl palmitate was added to vegetable oil and the butyryl derivative was prepared, followed by GLC analysis, the recovery was 99.3% with a coefficient of variation of 0.9%. Amounts as low as 1 mg/100 g food can be detected with a precision of 2.5%. The results of the analysis of a variety of foods for cholesterol, campesterol, sitosterol, and stigmasterol are given.

    Topics: Cholesterol; Cholesterol Esters; Chromatography, Gas; Chromatography, Liquid; Food Analysis; Methods; Phytosterols; Sitosterols; Stigmasterol

1977
STUDIES ON THE PLANT STEROLS AND TRIPERPENES. II. SEPARATION OF STIGMASTEROL, BETA-SITOSTEROL AND CAMPESTEROL, AND ABOUT SO-CALLED "GAMMA-SITOSTEROL".
    Chemical & pharmaceutical bulletin, 1965, Volume: 13

    Topics: Chemistry, Pharmaceutical; Cholesterol; Chromatography; Phytosterols; Research; Sitosterols; Sterols; Stigmasterol

1965
Identification of the D-glucosides of stigmasterol, sitosterol and campesterol in tobacco and cigarette smoke.
    The Biochemical journal, 1963, Volume: 87

    Topics: Cholesterol; Glucosides; Glycosides; Humans; Nicotiana; Phytosterols; Sitosterols; Smoke; Smoking; Sterols; Stigmasterol

1963