stigmastanol has been researched along with lathosterol* in 8 studies
6 trial(s) available for stigmastanol and lathosterol
Article | Year |
---|---|
Thyroid Hormone Status in Sitosterolemia Is Modified by Ezetimibe.
To assess the association between biomarkers of thyroid status and 5α-stanols in patients with sitosterolemia treated with ezetimibe (EZE).. Eight patients with sitosterolemia (16-56 years of age) were studied during 14 weeks off EZE therapy and 14 weeks on EZE (10 mg/day). Serum thyroid biomarkers (free triiodothyronine [FT3], free thyroxine [FT4], FT3/FT4 ratio, thyroid-stimulating hormone), 5α-stanols (sitostanol and cholestanol), and cholestanol precursors (total cholesterol and its synthesis marker lathosterol, and 7α-hydroxy-4-cholesten-3-one cholestenol) were measured at baseline and during the 14 weeks off EZE and on EZE.. EZE increased FT3/FT4 (10% ± 4%; P = .02). EZE reduced plasma and red blood cells sitostanol (-38% ± 6% and -20% ± 4%; all P < .05) and cholestanol (-18% ± 6% and -13% ± 3%; all P < .05). The change in plasma cholestanol level on EZE inversely correlated with the change in FT3/FT4 (r = -0.86; P = .01). EZE lowered total cholesterol (P < .0001) and did not affect 7α-hydroxy-4-cholesten-3-one cholestanol. EZE increased (P < .0001) lathosterol initially, but the level was not sustained, resulting in similar levels at week 14 off EZE and on EZE.. In patients with STSL, 5α-stanols levels might be associated with thyroid function. EZE reduces circulating 5α-stanols while increasing FT3/FT4, implying increased conversion of T4 to T3, thus possibly improving thyroid hormone status.. ClinicalTrials.govNCT01584206. Topics: Adolescent; Adult; Anticholesteremic Agents; Cholestanol; Cholestenones; Cholesterol; Ezetimibe; Female; Humans; Hypercholesterolemia; Intestinal Diseases; Lipid Metabolism, Inborn Errors; Male; Middle Aged; Phytosterols; Sitosterols; Thyrotropin; Thyroxine; Triiodothyronine; Young Adult | 2017 |
Plant stanol ester spreads as components of a balanced diet for pregnant and breast-feeding women: evaluation of clinical safety.
Clinical safety of consuming plant stanol ester spreads during pregnancy and lactation, the impact on maternal and infant serum and breast-milk cholesterol and the ratios (micromol/mmol of cholesterol) of synthesis and absorption markers were evaluated. Pregnant women (n 21) were randomised to control and dietary intervention groups, the intervention including advice to follow a balanced diet and to consume spreads enriched with plant stanol esters. Participants were followed during and after pregnancy and their infants up to 1 year of age. A mean 1.1 (sd 0.4) g consumption of plant stanols during pregnancy and 1.4 (sd 0.9) g 1 month post-partum increased sitostanol and the markers for cholesterol synthesis, lathosterol, lathosterol/campesterol and lathosterol/sitosterol, and reduced a marker for cholesterol absorption, campesterol, in maternal serum. In breast milk, desmosterol was lower in the intervention group, while no differences were detected between the groups in infants' serum. Plant stanol ester spread consumption had no impact on the length of gestation, infants' growth or serum beta-carotene concentration at 1 and 6 months of age, but the cholesterol-adjusted serum beta-carotene concentration was lowered at 1 month in the intervention group. Plant stanol ester spread consumption appeared safe in the clinical setting, except for potential lowering of infants' serum beta-carotene concentration, and was reflected in the markers of cholesterol synthesis and absorption in mothers' serum, encouraging further studies in larger settings. Topics: Analysis of Variance; beta Carotene; Biomarkers; Child Development; Cholesterol; Desmosterol; Female; Humans; Infant; Infant, Newborn; Lactation; Margarine; Milk, Human; Phytosterols; Pregnancy; Safety; Sitosterols; Squalene | 2009 |
Ratio of lathosterol to campesterol in serum predicts the cholesterol-lowering effect of sitostanol-supplemented margarine.
Plant sterol/stanol margarines are recommended as a lipid-lowering dietary supplement in the treatment of hypercholesterolemia. Parameters predicting the individual cholesterol-lowering effect have not been elucidated so far. Therefore, we investigated the responsiveness to sitostanol-supplemented margarine in a specially selected population.. From a total number of 137 male subjects with hypercholesterolemia, eight subjects with the lowest and eight subjects with the highest ratios of lathosterol to campesterol in serum were included in the study. They received 1 g sitostanol-supplemented margarine b.i.d. for four weeks. Serum lipoproteins, the cholesterol precursor lathosterol, the plant sterols campesterol and sitosterol were measured. Subjects with a low ratio of lathosterol to campesterol had a significant decrease of serum total cholesterol (-14.2%; p < 0.01) and LDL cholesterol (-13.8%; p < 0.01; responder). In subjects with a high ratio there was no significant change in total cholesterol and LDL cholesterol (2.2 and 4.3%; non-responder).. The ratio of serum lathosterol to campesterol predicts the reduction of total cholesterol and LDL cholesterol during administration of sitostanol-supplemented margarine in patients with mild hypercholesterolemia. Topics: Adult; Anticholesteremic Agents; Cholesterol; Cholesterol, Dietary; Cholesterol, HDL; Cholesterol, LDL; Humans; Hypercholesterolemia; Male; Margarine; Middle Aged; Patient Selection; Phytosterols; Predictive Value of Tests; Sitosterols; Triglycerides | 2005 |
Consumption of tall oil-derived phytosterols in a chocolate matrix significantly decreases plasma total and low-density lipoprotein-cholesterol levels.
In a randomized, double-blind, placebo-controlled trial we evaluated the effect of dietary chocolates enriched with a wood-based phytosterol-phytostanol mixture, containing 18 % (w/w) sitostanol, compared with placebo dietary chocolates in seventy subjects with primary hypercholesterolaemia (total cholesterol levels below 8 mmol/l). For 4 weeks, participants consumed three servings of the phytosterol-enriched chocolate/d that provided 1.8 g unesterified phytosterols/d or a placebo chocolate in conjunction with a low-fat, low-cholesterol diet. Plasma total and LDL-cholesterol levels were statistically significantly reduced by 6.4 % (-0.44 mmol/l) and 10.3 % (-0.49 mmol/l), respectively, after 4 weeks of phytosterol-enriched-chocolate treatment. Plasma HDL-cholesterol and triacylglycerol levels were not affected. Consumption of phytosterol-enriched chocolates significantly increased plasma lathosterol concentration (+20.7 %), reflecting an increased endogenous cholesterol synthesis in response to phytosterol-induced decreased intestinal cholesterol absorption. Furthermore, the chocolates enriched with phytosterols significantly increased both plasma sitosterol (+95.8 %) and campesterol (+64.1 %) levels, compared with the placebo chocolate group. However, the absolute values of plasma sitosterol and campesterol remained within the normal range, that is, below 10 mg/l. The chocolates with phytosterols were palatable and induced no clinical or biochemical side effects. These findings indicate that dietary chocolate enriched with tall oil-derived phytosterols (1.8 g/d) is effective in lowering blood total and LDL-cholesterol levels in subjects with mild hypercholesterolaemia and thus may be helpful in reducing the risk of CHD in these individuals. Topics: Adult; Apolipoproteins B; Cacao; Chi-Square Distribution; Cholesterol; Cholesterol, LDL; Double-Blind Method; Female; Humans; Hypercholesterolemia; Lipids; Male; Middle Aged; Phytosterols; Plant Oils; Sitosterols; Statistics, Nonparametric | 2002 |
Effects of diets enriched with two different plant stanol ester mixtures on plasma ubiquinol-10 and fat-soluble antioxidant concentrations.
Plant stanols lower intestinal cholesterol absorption. This causes a decrease in serum low-density lipoprotein (LDL)-cholesterol, despite a compensatory increase in cholesterol synthesis. We therefore hypothesized that plant stanols also change LDL-cholesterol-standardized concentrations of ubiquinol-10 (a side product of the cholesterol synthesis cascade) and of those fat-soluble antioxidants that are mainly carried by LDL. To examine this, 112 nonhypercholesterolemic subjects consumed low erucic acid rapeseed oil (LEAR)-based margarine and shortening for 4 weeks. For the next 8 weeks, 42 subjects consumed the same products, while the other subjects received products with vegetable oil-based stanols (2.6 g sitostanol plus 1.2 g campestanol daily, n = 36) or wood-based stanols (3.7 g sitostanol plus 0.3 g campestanol daily, n = 34). Consumption of both plant stanol ester mixtures increased cholesterol synthesis and lowered cholesterol absorption, as indicated by increased serum cholesterol-standardized lathosterol and decreased plant sterol concentrations, respectively. Compared with the control group, absolute plasma ubiquinol-10 concentrations were lowered by 12.3% +/- 18.9% (-0.14 microg/mL v. the control group; P =.004; 95% confidence interval [CI] for the difference in changes, -0.05 to -0.22 microg/mL) in the vegetable oil-based group and by 15.4% +/- 13.0% (-0.17 microg/mL v. the control group; P <.001; 95% CI for the difference, -0.08 to -0.27 microg/mL) in the wood-based group. Changes in LDL-cholesterol-standardized ubiquinol-10 concentrations were not significantly changed. The most lipophylic antioxidants, the hydrocarbon carotenoids (beta-carotene, alpha-carotene, and lycopene), decreased most, followed by the less lipophylic oxygenated carotenoids (lutein/zeaxanthin and beta-cryptoxanthin) and the tocopherols. These reductions were related to the reduction in LDL, which carry most of these antioxidants. The decrease in the hydrocarbon carotenoids, however, was also significantly associated with a decrease in cholesterol absorption. LDL-cholesterol-standardized antioxidant concentrations were not changed, except for beta-carotene, which was still, although not significantly, lowered by about 10%. We conclude that the increase in endogenous cholesterol synthesis during plant stanol ester consumption does not result in increased LDL-cholesterol-standardized concentrations of ubiquinol-10, a side product of the cholesterol synthesis cascade. Fur Topics: Absorption; Adolescent; Adult; Antioxidants; Carotenoids; Cholesterol; Cholesterol, LDL; Diet; Erucic Acids; Fats; Fatty Acids, Monounsaturated; Female; Humans; Male; Margarine; Middle Aged; Phytosterols; Plant Oils; Plants, Edible; Rapeseed Oil; Sitosterols; Solubility; Ubiquinone; Vitamin A; Vitamin E; Wood | 2001 |
Cholesterol-lowering effect of stanol ester in a US population of mildly hypercholesterolemic men and women: a randomized controlled trial.
To determine the efficacy of stanol esters in lowering cholesterol in a US population.. After a run-in phase, 318 subjects were randomized to receive one of the following margarine-like spreads containing stanol ester or placebo for 8 weeks: EU 3 G: 1 g of stanol (ester form) per 8-g serving of a European formula 3 times a day; US 3 G: 1 g of stanol (ester form) per 8-g serving of a US reformulation 3 times a day; US 2 G: 0.67 g of stanol (ester form) per 8-g serving of a US reformulation 3 times a day; or placebo spread.. Mean +/- SD baseline total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) levels were 233+/-20 and 153+21 mg+/-dL, respectively. In the US 3 G group, 3 g daily of stanol esters lowered TC and LDL-C levels by 6.4% and 10.1%, respectively. There was a dose-dependent response compared with 2 g daily (US 2 G). Triglyceride and high-density lipoprotein cholesterol levels were unchanged. The incidence of adverse effects was not different from placebo. Serum vitamin A and 25-hydroxyvitamin D levels were not affected.. Stanol esters lowered TC and LDL-C levels in a mildly hypercholesterolemic US population without evidence of adverse effects. It may be a useful dietary adjunct to lower cholesterol. Topics: Adult; Anticholesteremic Agents; beta Carotene; Cholestanols; Cholesterol; Cholesterol, HDL; Cholesterol, LDL; Dietary Fats; Dose-Response Relationship, Drug; Double-Blind Method; Esters; Female; Humans; Hypercholesterolemia; Male; Middle Aged; Phytosterols; Sitosterols; Treatment Outcome; Triglycerides; United States; Vitamin A; Vitamin D | 1999 |
2 other study(ies) available for stigmastanol and lathosterol
Article | Year |
---|---|
Precise quantitative determination of phytosterols, stanols, and cholesterol metabolites in human serum by capillary gas-liquid chromatography.
Total lipid extraction, solid-phase extraction, saponification, derivatization to trimethylsilyl ether derivatives, then capillary gas-liquid chromatography were used for quantitative analysis of sitosterol, campesterol, stigmasterol, sitostanol, campestanol, lathosterol, desmosterol, and lanosterol in human serum. Details of quality control integral to the accuracy and precision of analyses are included. The method limits of detection and quantitation, respectively, ranged from 0.05 microg/ml and 0.2 microg/ml for sitostanol to 0.4 microg/ml and 1.2 microg/ml for campesterol and campestanol. Analytes were measured at concentrations of 120 ng/ml to 6 microg/ml with standard deviations of 0.02 to 0.12 microg/ml for 55 analyses of a control serum sample conducted over a 2-month period. Topics: Cholesterol; Chromatography, Gas; Desmosterol; Humans; Phytosterols; Quality Control; Reference Standards; Sitosterols; Time Factors | 1999 |
Enhanced efficacy of sitostanol-containing versus sitostanol-free phytosterol mixtures in altering lipoprotein cholesterol levels and synthesis in rats.
To investigate the action and mechanism of a dietary phytosterol mixture naturally containing sitostanol, derived from tall-oil, on circulating cholesterol and lipoprotein levels, five groups of rats were fed a control elemental diet (group 1), a control elemental diet with 1% cholesterol alone (group 2) or with sitostanol mixtures or a sitostanol-free mixture supplemented at 0.2% (group 3), 0.5% (group 4) or 1% (group 5) of dietary levels. One per cent supplementation of sitostanol (21%) compared with sitostanol-free mixtures decreased (P < 0.02) total serum cholesterol. Dietary sitostanol (16% or 21%) mixture at 1% dietary levels decreased (P < 0.05) low density lipoprotein (LDL) cholesterol and increased (P < 0.05) high density lipoprotein (HDL) cholesterol levels. The decrease of LDL and increase of HDL cholesterol were correlated (P < 0.01) with the level of sitostanol mixture in the diet. Consumption of the sitostanol-containing mixture (1% dietary levels) caused a compensatory increase in cholesterol synthesis as indicated by elevated (P < 0.05) lathosterol/ cholesterol ratios in plasma and hepatic cholesterol fractional synthesis rate (FSR) (P < 0.02). Both sitostanol and sitostanol-free mixtures at 0.5% or 1% dietary intake levels increased plasma campesterol and beta-sitosterol levels, while plasma sitostanol levels were negligible. The absence of sitostanol in plasma and the increase in cholesterol synthesis induced by dietary sitostanol mixtures in addition to elevation of plasma campesterol and beta-sitosterol by sitostanol or sitostanol-free mixtures suggest that sitostanol mixtures effectively modify circulating lipoprotein cholesterol concentrations at the level of the intestine, rather than internally at the level of cholesterogenesis. Topics: Animals; Anticholesteremic Agents; Cholesterol; Cholesterol, HDL; Cholesterol, LDL; Dietary Fats, Unsaturated; Drug Interactions; Eating; Glycine max; Liver; Male; Phytosterols; Plant Oils; Rats; Rats, Wistar; Sitosterols; Structure-Activity Relationship | 1995 |