Page last updated: 2024-08-23

staurosporine and erlotinib

staurosporine has been researched along with erlotinib in 12 studies

Research

Studies (12)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's3 (25.00)29.6817
2010's6 (50.00)24.3611
2020's3 (25.00)2.80

Authors

AuthorsStudies
Atteridge, CE; Azimioara, MD; Benedetti, MG; Biggs, WH; Carter, TA; Ciceri, P; Edeen, PT; Fabian, MA; Floyd, M; Ford, JM; Galvin, M; Gerlach, JL; Grotzfeld, RM; Herrgard, S; Insko, DE; Insko, MA; Lai, AG; Lélias, JM; Lockhart, DJ; Mehta, SA; Milanov, ZV; Patel, HK; Treiber, DK; Velasco, AM; Wodicka, LM; Zarrinkar, PP1
Bullock, AN; Fedorov, O; Knapp, S; Marsden, B; Müller, S; Pogacic, V; Rellos, P; Schwaller, J; Sundström, M1
Atteridge, CE; Campbell, BT; Chan, KW; Ciceri, P; Davis, MI; Edeen, PT; Faraoni, R; Floyd, M; Gallant, P; Herrgard, S; Hunt, JP; Karaman, MW; Lockhart, DJ; Milanov, ZV; Morrison, MJ; Pallares, G; Patel, HK; Pritchard, S; Treiber, DK; Wodicka, LM; Zarrinkar, PP1
Russu, WA; Shallal, HM1
Ciceri, P; Davis, MI; Herrgard, S; Hocker, M; Hunt, JP; Pallares, G; Treiber, DK; Wodicka, LM; Zarrinkar, PP1
Al-Mazaideh, GM; Erdmann, F; Göllner, C; Rohe, A; Schmidt, M; Sippl, W; Wichapong, K1
Abou El Ella, DA; Aly, RM; El-Motwally, AM; Ibrahim, DA1
Jiang, Y; Ouyang, L; Sun, D; Wang, J; Yang, S; Yao, D; Yu, Y; Zhang, J; Zhao, Y; Zhou, Y; Zhu, L1
Hou, W; Ma, Y; Ren, Y; Sun, H; Yan, B; Zhang, Z1
De Jonghe, S; Einav, S; Froeyen, M; Herdewijn, P; Martinez-Gualda, B; Saul, S; Schols, D1
Arya, GC; Jaitak, V; Kaur, K1
Ahmadi, R; Emami, S1

Reviews

2 review(s) available for staurosporine and erlotinib

ArticleYear
Isoxazole derivatives as anticancer agent: A review on synthetic strategies, mechanism of action and SAR studies.
    European journal of medicinal chemistry, 2021, Oct-05, Volume: 221

    Topics: Antineoplastic Agents; Apoptosis; Breast Neoplasms; Cell Proliferation; Drug Screening Assays, Antitumor; Female; Humans; Isoxazoles

2021
Recent applications of vinyl sulfone motif in drug design and discovery.
    European journal of medicinal chemistry, 2022, Apr-15, Volume: 234

    Topics: Chemistry, Pharmaceutical; Drug Design; Sulfones; Vinyl Compounds

2022

Other Studies

10 other study(ies) available for staurosporine and erlotinib

ArticleYear
A small molecule-kinase interaction map for clinical kinase inhibitors.
    Nature biotechnology, 2005, Volume: 23, Issue:3

    Topics: Benzamides; Drug Design; Escherichia coli; Escherichia coli Proteins; Imatinib Mesylate; Microchemistry; Pharmaceutical Preparations; Piperazines; Protein Binding; Protein Interaction Mapping; Protein Kinase Inhibitors; Pyrimidines

2005
A systematic interaction map of validated kinase inhibitors with Ser/Thr kinases.
    Proceedings of the National Academy of Sciences of the United States of America, 2007, Dec-18, Volume: 104, Issue:51

    Topics: Amino Acid Sequence; Binding Sites; Clinical Trials as Topic; Drug Evaluation, Preclinical; Enzyme Stability; Humans; Molecular Sequence Data; Phylogeny; Protein Array Analysis; Protein Conformation; Protein Kinase Inhibitors; Protein Serine-Threonine Kinases

2007
A quantitative analysis of kinase inhibitor selectivity.
    Nature biotechnology, 2008, Volume: 26, Issue:1

    Topics: Binding Sites; Enzyme Activation; Humans; Phosphotransferases; Protein Binding; Protein Interaction Mapping; Protein Kinase Inhibitors; Proteome; Quantitative Structure-Activity Relationship

2008
Discovery, synthesis, and investigation of the antitumor activity of novel piperazinylpyrimidine derivatives.
    European journal of medicinal chemistry, 2011, Volume: 46, Issue:6

    Topics: Antineoplastic Agents; Cell Line, Tumor; Cell Proliferation; Dose-Response Relationship, Drug; Drug Discovery; Drug Screening Assays, Antitumor; Humans; Models, Molecular; Molecular Structure; Piperazines; Protein Kinase Inhibitors; Protein Kinases; Pyrimidines; Stereoisomerism; Structure-Activity Relationship

2011
Comprehensive analysis of kinase inhibitor selectivity.
    Nature biotechnology, 2011, Oct-30, Volume: 29, Issue:11

    Topics: Catalysis; Drug Design; Enzyme Stability; High-Throughput Screening Assays; Humans; Protein Binding; Protein Kinase Inhibitors; Protein Kinases; Proteomics; Signal Transduction; Substrate Specificity

2011
Evaluation of potential Myt1 kinase inhibitors by TR-FRET based binding assay.
    European journal of medicinal chemistry, 2013, Volume: 61

    Topics: Dose-Response Relationship, Drug; Fluorescence Resonance Energy Transfer; Glycolipids; Humans; Membrane Proteins; Models, Molecular; Molecular Structure; Protein Kinase Inhibitors; Protein Serine-Threonine Kinases; Protein-Tyrosine Kinases; Structure-Activity Relationship

2013
Molecular design and synthesis of certain new quinoline derivatives having potential anticancer activity.
    European journal of medicinal chemistry, 2015, Sep-18, Volume: 102

    Topics: Antineoplastic Agents; Cell Proliferation; Dose-Response Relationship, Drug; Drug Design; Drug Screening Assays, Antitumor; ErbB Receptors; Humans; MCF-7 Cells; Molecular Structure; Protein Kinase Inhibitors; Quinolines; Structure-Activity Relationship

2015
Design, synthesis and structure-activity relationship studies of a focused library of pyrimidine moiety with anti-proliferative and anti-metastasis activities in triple negative breast cancer.
    European journal of medicinal chemistry, 2017, Nov-10, Volume: 140

    Topics: Antineoplastic Agents; Apoptosis; Cell Proliferation; Cell Survival; Dose-Response Relationship, Drug; Drug Design; Drug Screening Assays, Antitumor; Humans; Models, Molecular; Molecular Structure; Pyrimidines; Structure-Activity Relationship; Triple Negative Breast Neoplasms; Tumor Cells, Cultured

2017
Novel quinazoline derivatives bearing various 6-benzamide moieties as highly selective and potent EGFR inhibitors.
    Bioorganic & medicinal chemistry, 2018, 05-01, Volume: 26, Issue:8

    Topics: Antineoplastic Agents; Benzamides; Cell Proliferation; Cell Survival; Dose-Response Relationship, Drug; Drug Screening Assays, Antitumor; ErbB Receptors; Humans; Molecular Structure; Protein Kinase Inhibitors; Quinazolines; Structure-Activity Relationship; Tumor Cells, Cultured

2018
Discovery of 3-phenyl- and 3-N-piperidinyl-isothiazolo[4,3-b]pyridines as highly potent inhibitors of cyclin G-associated kinase.
    European journal of medicinal chemistry, 2021, Mar-05, Volume: 213

    Topics: Antiviral Agents; Cell Line, Tumor; Cell Survival; Dengue Virus; Dose-Response Relationship, Drug; Drug Discovery; Humans; Intracellular Signaling Peptides and Proteins; Microbial Sensitivity Tests; Molecular Structure; Protein Kinase Inhibitors; Protein Serine-Threonine Kinases; Structure-Activity Relationship

2021