sta-9090 has been researched along with tanespimycin* in 14 studies
3 review(s) available for sta-9090 and tanespimycin
Article | Year |
---|---|
Heat shock protein 90 inhibitors in non-small-cell lung cancer.
Heat shock protein 90 (Hsp90) protects cellular proteins from degradation by the ubiquitin-proteasome system in conditions of stress. Many cancers have increased expression of Hsp90 to ensure their malignant phenotype of increased proliferation, decreased apoptosis, and metastatic potential by conservation of proteins like epidermal growth factor receptor (EGFR), human epidermal growth factor receptor 2, anaplastic lymphoma kinase (ALK), v-Raf murine sarcoma viral oncogene homologue B1, AKT, B-cell lymphoma 2, and cell cycle proteins. This review discusses recent developments in the strategy of Hsp90 inhibition as a targeted therapy in non-small-cell lung cancer (NSCLC).. Hsp90 inhibitors result in growth inhibition and tumor regression in NSCLC cell lines and tumor xenograft models, both as monotherapy and in combination with other drugs. Hsp90 inhibition has particular efficacy in molecular subtypes of NSCLC, such as EGFR-mutated and ALK-rearranged NSCLC. IPI-504 and ganetespib have activity in NSCLC both as monotherapy and in combination with docetaxel.. Preclinical studies and early clinical trials have confirmed the efficacy of Hsp90 inhibition as a targeted therapy in NSCLC. Ongoing trials will further define the utility of Hsp90 inhibitors in NSCLC. Topics: Benzamides; Benzoquinones; Carcinoma, Non-Small-Cell Lung; HSP90 Heat-Shock Proteins; Humans; Isoindoles; Isoxazoles; Lactams, Macrocyclic; Lung Neoplasms; Molecular Targeted Therapy; Resorcinols; Treatment Outcome; Triazoles | 2014 |
Hsp90 inhibitors in breast cancer: a systematic review.
Pharmacological inhibition of Hsp90 shows great promise in breast cancer treatment. This is the first systematic review to synthesize all available data and to evaluate the efficacy and safety of Hsp90 inhibitors in breast cancer.. This study was performed in accordance with the PRISMA guidelines. Eligible articles were identified by a search of MEDLINE and ClinicalTrials.gov databases, using a predefined combination of the terms "breast", "cancer", "Hsp90", "inhibitors".. Overall, 19 articles (190 patients) were eligible. The greatest clinical activity has been observed on the field of HER2-positive metastatic breast cancer. However, accumulating data suggest that Hsp90 inhibitors may play a significant role in the treatment of triple negative and aromatase inhibitor-resistant breast cancer.. In the last decade, the development of Hsp90 inhibitors has moved forward rapidly; however, no phase III trials have been conducted and none agent has been approved for use in the clinical practice. Topics: Adenine; Antineoplastic Agents; Benzamides; Benzoquinones; Biomarkers, Tumor; Female; Glycine; HSP70 Heat-Shock Proteins; HSP90 Heat-Shock Proteins; Humans; Indazoles; Isoxazoles; Lactams, Macrocyclic; Pyridines; Resorcinols; Triazoles; Triple Negative Breast Neoplasms | 2013 |
[Mechanisms of resistance to crizotinib in patients with transforming EML4-ALK fusion gene].
Topics: Apoptosis; Benzoquinones; Carcinoma, Non-Small-Cell Lung; Crizotinib; Drug Resistance, Neoplasm; HSP90 Heat-Shock Proteins; Humans; Lactams, Macrocyclic; Lung Neoplasms; Mutation; Oncogene Proteins, Fusion; Protein Kinase Inhibitors; Pyrazoles; Pyridines; Triazoles | 2012 |
11 other study(ies) available for sta-9090 and tanespimycin
Article | Year |
---|---|
HSP90 identified by a proteomic approach as druggable target to reverse platinum resistance in ovarian cancer.
Acquired resistance to platinum (Pt)-based therapies is an urgent unmet need in the management of epithelial ovarian cancer (EOC) patients. Here, we characterized by an unbiased proteomics method three isogenic EOC models of acquired Pt resistance (TOV-112D, OVSAHO, and MDAH-2774). Using this approach, we identified several differentially expressed proteins in Pt-resistant (Pt-res) compared to parental cells and the chaperone HSP90 as a central hub of these protein networks. Accordingly, up-regulation of HSP90 was observed in all Pt-res cells and heat-shock protein 90 alpha isoform knockout resensitizes Pt-res cells to cisplatin (CDDP) treatment. Moreover, pharmacological HSP90 inhibition using two different inhibitors [17-(allylamino)-17-demethoxygeldanamycin (17AAG) and ganetespib] synergizes with CDDP in killing Pt-res cells in all tested models. Mechanistically, genetic or pharmacological HSP90 inhibition plus CDDP -induced apoptosis and increased DNA damage, particularly in Pt-res cells. Importantly, the antitumor activities of HSP90 inhibitors (HSP90i) were confirmed both ex vivo in primary cultures derived from Pt-res EOC patients ascites and in vivo in a xenograft model. Collectively, our data suggest an innovative antitumor strategy, based on Pt compounds plus HSP90i, to rechallenge Pt-res EOC patients that might warrant further clinical evaluation. Topics: Animals; Antineoplastic Agents; Benzoquinones; Carcinoma, Ovarian Epithelial; Cell Line, Tumor; Cisplatin; Drug Resistance, Neoplasm; Female; HSP90 Heat-Shock Proteins; Humans; Lactams, Macrocyclic; Mice, Inbred NOD; Mice, Nude; Mice, SCID; Ovarian Neoplasms; Platinum; Proteomics; Triazoles; Xenograft Model Antitumor Assays | 2021 |
Heat Shock Protein 90 Inhibitor Effects on Pancreatic Cancer Cell Cultures.
Pancreatic ductal adenocarcinoma is one of the deadliest cancers for which few curative therapies are available to date. Heat shock protein 90 (Hsp90) inhibitors have shown activity against numerous cancers in vitro; therefore, we tested whether they could be used to target pancreatic ductal adenocarcinoma.. Inhibitors of Hsp90 ATPase activity were applied on low-passage pancreatic cell line cultures (Panc10.05, Panc215, A6L) in a dose-response manner, and the inhibitor in vitro effect on cell growth was evaluated. Seven of novel Hsp90 inhibitors based on resorcinol fragment and 5 commercially available Hsp90 inhibitors (17-AAG, AT-13387, AUY-922, ganetespib, and rifabutin) as well as control compound triptolide were tested yielding IC50 values in 2- and 3-dimensional assays.. The novel Hsp90 inhibitors exhibited strong effects on all 3 tested pancreatic cell line cultures (Panc10.05, Panc215, A6L) reaching the IC50 of 300 to 600 nM in 2- and 3-dimensional assays.. Novel Hsp90 inhibitors can be developed as antipancreatic cancer agents. Their chemical structures are simpler, and they are likely to exhibit lower side effects than the much more complex inhibitors used as controls. Topics: Adenosine Triphosphatases; Antineoplastic Agents; Benzamides; Benzoquinones; Carcinoma, Pancreatic Ductal; Cell Culture Techniques, Three Dimensional; Cell Line, Tumor; Cell Proliferation; Dose-Response Relationship, Drug; HSP90 Heat-Shock Proteins; Humans; Isoindoles; Isoxazoles; Lactams, Macrocyclic; Molecular Structure; Pancreatic Neoplasms; Resorcinols; Rifabutin; Triazoles | 2021 |
Hsp90β inhibitors prevent GLT-1 degradation but have no beneficial efficacy on absence epilepsy.
The loss of glutamate transporter-1 (GLT-1) is associated with temporal lobe epilepsy (TLE). A recent study reported that Hsp90β interacted with GLT-1 and recruited it to 20S proteasome for degradation. Therefore, inhibiting Hsp90β may be a new strategy for treating epilepsy. So far, no studies have shown whether the inhibition of Hsp90β had therapeutic effects on absence epilepsy. Using a model of absence epilepsy, we demonstrated that 17-allylamino-17-demethoxygeldanamycin (17AAG) and Ganetespib (STA9090) had no therapeutic effect. Although this is a negative result, it also has a meaningful exploration value for whether Hsp90 inhibitors have therapeutic effects on other epilepsy types. Topics: Animals; Anticonvulsants; Benzoquinones; Epilepsy, Absence; Excitatory Amino Acid Transporter 2; Gene Expression Regulation; Glial Fibrillary Acidic Protein; Hippocampus; HSP90 Heat-Shock Proteins; Lactams, Macrocyclic; Mice; Pentylenetetrazole; Triazoles | 2019 |
The antitumor natural product tanshinone IIA inhibits protein kinase C and acts synergistically with 17-AAG.
Tanshinone IIA (Tan IIA), the primary bioactive compound derived from the traditional Chinese medicine (TCM) Salvia miltiorrhiza Bunge, has been reported to possess antitumor activity. However, its antitumor mechanisms are not fully understood. To resolve the potential antitumor mechanism(s) of Tan IIA, its gene expression profiles from our database was analyzed by connectivity map (CMAP) and the CMAP-based mechanistic predictions were confirmed/validated in further studies. Specifically, Tan IIA inhibited total protein kinase C (PKC) activity and selectively suppressed the expression of cytosolic and plasma membrane PKC isoforms ζ and ε. The Ras/MAPK pathway that is closely regulated by the PKC signaling is also inhibited by Tan IIA. While Tan IIA did not inhibit heat shock protein 90 (Hsp90), it synergistically enhanced the antitumor efficacy of the Hsp90 inhibitors 17-AAG and ganetespib in human breast cancer MCF-7 cells. In addition, Tan IIA significantly inhibited PI3K/Akt/mTOR signaling, and induced both cell cycle arrest and autophagy. Collectively, these studies provide new insights into the molecular mechanisms responsible for antitumor activity of Tan IIA. Topics: Abietanes; Animals; Antineoplastic Agents, Phytogenic; Apoptosis; Autophagy; Benzoquinones; Biological Products; Breast Neoplasms; Cell Cycle Checkpoints; Cell Proliferation; Drug Synergism; Female; Gene Expression Regulation, Neoplastic; HSP90 Heat-Shock Proteins; Humans; Lactams, Macrocyclic; MAP Kinase Signaling System; MCF-7 Cells; Mice, Nude; Phosphatidylinositol 3-Kinases; Protein Kinase C; Proto-Oncogene Proteins c-akt; TOR Serine-Threonine Kinases; Triazoles; Xenograft Model Antitumor Assays | 2018 |
Prospective identification of resistance mechanisms to HSP90 inhibition in KRAS mutant cancer cells.
Inhibition of the HSP90 chaperone results in depletion of many signaling proteins that drive tumorigenesis, such as downstream effectors of KRAS, the most commonly mutated human oncogene. As a consequence, several small-molecule HSP90 inhibitors are being evaluated in clinical trials as anticancer agents. To prospectively identify mechanisms through which HSP90-dependent cancer cells evade pharmacologic HSP90 blockade, we generated multiple mutant KRAS-driven cancer cell lines with acquired resistance to the purine-scaffold HSP90 inhibitor PU-H71. All cell lines retained dependence on HSP90 function, as evidenced by sensitivity to short hairpin RNA-mediated suppression of HSP90AA1 or HSP90AB1 (also called HSP90α and HSP90β, respectively), and exhibited two types of genomic alterations that interfere with the effects of PU-H71 on cell viability and proliferation: (i) a Y142N missense mutation in the ATP-binding domain of HSP90α that co-occurred with amplification of the HSP90AA1 locus, (ii) genomic amplification and overexpression of the ABCB1 gene encoding the MDR1 drug efflux pump. In support of a functional role for these alterations, exogenous expression of HSP90α Y142N conferred PU-H71 resistance to HSP90-dependent cells, and pharmacologic MDR1 inhibition with tariquidar or lowering ABCB1 expression restored sensitivity to PU-H71 in ABCB1-amplified cells. Finally, comparison with structurally distinct HSP90 inhibitors currently in clinical development revealed that PU-H71 resistance could be overcome, in part, by ganetespib (also known as STA9090) but not tanespimycin (also known as 17-AAG). Together, these data identify potential mechanisms of acquired resistance to small molecules targeting HSP90 that may warrant proactive screening for additional HSP90 inhibitors or rational combination therapies. Topics: A549 Cells; Antineoplastic Agents; Apoptosis; ATP Binding Cassette Transporter, Subfamily B; Benzodioxoles; Benzoquinones; Cell Proliferation; Cell Survival; Dose-Response Relationship, Drug; Drug Resistance, Neoplasm; Gene Amplification; Genetic Predisposition to Disease; HSP90 Heat-Shock Proteins; Humans; Lactams, Macrocyclic; Mutation; Mutation, Missense; Neoplasms; Phenotype; Proto-Oncogene Proteins p21(ras); Purines; RNA Interference; Transfection; Triazoles | 2017 |
The role of heat shock protein 90 in migration and proliferation of vascular smooth muscle cells in the development of atherosclerosis.
The molecular chaperone heat shock protein 90 (HSP90) is overexpressed in plaques of atherosclerosis patients, and is associated with plaque instability. However, the role of HSP90 in atherosclerosis remains unclear. The present study investigated the effects of HSP90 inhibition on migration and proliferation of vascular smooth muscle cells (VSMCs) and involvement in atherosclerosis. To examine the role of HSP90 in VSMC migration, VSMCs were treated with the specific HSP90 inhibitors, 17-N-allylamino-17-demethoxygeldanamycin (17-AAG) and STA-9090. Results of a chemotaxis assay showed that the HSP90 inhibitors suppress migration of VSMCs. HSP90 inhibition also prevented invasion and sprout formation of VSMCs via inhibition of matrix metalloproteinase-2 proteolytic activity. Results of a flow cytometric analysis showed that HSP90 inhibition induces cell cycle arrest via regulation of cyclin D3, PCNA and pRb. To investigate the role of HSP90 in the development of atherosclerosis, low-density lipoprotein receptor (LDLR) deficient mice were fed with a high cholesterol diet for 4weeks and treated with 17-AAG for 8weeks. HSP90 inhibition suppressed migration of VSMCs into atherosclerotic plaque lesions in high cholesterol diet-stimulated LDLR(-/-) mice. Inhibition of HSP90 attenuates formation of atherosclerotic plaques via suppression of VSMC migration and proliferation, indicating that HSP90 inhibitors can be used as therapeutic agents for atherosclerosis and in stent restenosis. Topics: Animals; Aorta; Atherosclerosis; Benzoquinones; Cell Cycle Checkpoints; Cell Line; Cell Movement; Cell Proliferation; Cholesterol; Diet, High-Fat; Gene Expression Regulation; HSP90 Heat-Shock Proteins; Humans; Lactams, Macrocyclic; Matrix Metalloproteinase 2; Mice; Mice, Inbred C57BL; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; Plaque, Atherosclerotic; Primary Cell Culture; Receptors, LDL; Signal Transduction; Triazoles | 2014 |
Targeting heat shock protein 90 for the treatment of malignant pheochromocytoma.
Metastatic pheochromocytoma represents one of the major clinical challenges in the field of neuroendocrine oncology. Recent molecular characterization of pheochromocytoma suggests new treatment options with targeted therapies. In this study we investigated the 90 kDa heat shock protein (Hsp90) as a potential therapeutic target for advanced pheochromocytoma. Both the first generation, natural product Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG, tanespimycin), and the second-generation synthetic Hsp90 inhibitor STA-9090 (ganetespib) demonstrated potent inhibition of proliferation and migration of pheochromocytoma cell lines and induced degradation of key Hsp90 clients. Furthermore, ganetespib induced dose-dependent cytotoxicity in primary pheochromocytoma cells. Using metastatic models of pheochromocytoma, we demonstrate the efficacy of 17-AAG and ganetespib in reducing metastatic burden and increasing survival. Levels of Hsp70 in plasma from the xenograft studies served as a proximal biomarker of drug treatment. Our study suggests that targeting Hsp90 may benefit patients with advanced pheochromocytoma. Topics: Adrenal Gland Neoplasms; Adrenal Glands; Animals; Apoptosis; Benzoquinones; Cell Line, Tumor; Cell Movement; Cell Proliferation; Cells, Cultured; Female; HSP90 Heat-Shock Proteins; Humans; Lactams, Macrocyclic; Mice; Mice, Nude; Molecular Targeted Therapy; Neoplasm Metastasis; Pheochromocytoma; Rats; Triazoles | 2013 |
Potent activity of the Hsp90 inhibitor ganetespib in prostate cancer cells irrespective of androgen receptor status or variant receptor expression.
Androgen ablation therapy represents the first line of therapeutic intervention in men with advanced or recurrent prostate tumors. However, the incomplete efficacy and lack of durable response to this clinical strategy highlights an urgent need for alternative treatment options to improve patient outcomes. Targeting the molecular chaperone heat shock protein 90 (Hsp90) represents a potential avenue for therapeutic intervention as its inhibition results in the coordinate blockade of multiple oncogenic signaling pathways in cancer cells. Moreover, Hsp90 is essential for the stability and function of numerous client proteins, a number of which have been causally implicated in the pathogenesis of prostate cancer, including the androgen receptor (AR). Here, we examined the preclinical activity of ganetespib, a small molecule inhibitor of Hsp90, in a panel of prostate cancer cell lines. Ganetespib potently decreased viability in all lines, irrespective of their androgen sensitivity or receptor status, and more effectively than the ansamycin inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG). Interestingly, while ganetespib exposure decreased AR expression and activation, the constitutively active V7 truncated isoform of the receptor was unaffected by Hsp90 inhibition. Mechanistically, ganetespib exerted concomitant effects on mitogenic and survival pathways, as well as direct modulation of cell cycle regulators, to induce growth arrest and apoptosis. Further, ganetespib displayed robust antitumor efficacy in both AR-negative and positive xenografts, including those derived from the 22Rv1 prostate cancer cell line that co-expresses full-length and variant receptors. Together these data suggest that further investigation of ganetespib as a new therapeutic treatment for prostate cancer patients is warranted. Topics: Animals; Apoptosis; Benzoquinones; Blotting, Western; Cell Cycle; Cell Cycle Proteins; Cell Proliferation; Flow Cytometry; HSP90 Heat-Shock Proteins; Humans; Lactams, Macrocyclic; Male; Mice; Mice, SCID; Prostatic Neoplasms; Real-Time Polymerase Chain Reaction; Receptors, Androgen; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Triazoles; Tumor Cells, Cultured; Xenograft Model Antitumor Assays | 2013 |
Ganetespib, a unique triazolone-containing Hsp90 inhibitor, exhibits potent antitumor activity and a superior safety profile for cancer therapy.
Targeted inhibition of the molecular chaperone Hsp90 results in the simultaneous blockade of multiple oncogenic signaling pathways and has, thus, emerged as an attractive strategy for the development of novel cancer therapeutics. Ganetespib (formerly known as STA-9090) is a unique resorcinolic triazolone inhibitor of Hsp90 that is currently in clinical trials for a number of human cancers. In the present study, we showed that ganetespib exhibits potent in vitro cytotoxicity in a range of solid and hematologic tumor cell lines, including those that express mutated kinases that confer resistance to small-molecule tyrosine kinase inhibitors. Ganetespib treatment rapidly induced the degradation of known Hsp90 client proteins, displayed superior potency to the ansamycin inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG), and exhibited sustained activity even with short exposure times. In vivo, ganetespib showed potent antitumor efficacy in solid and hematologic xenograft models of oncogene addiction, as evidenced by significant growth inhibition and/or regressions. Notably, evaluation of the microregional activity of ganetespib in tumor xenografts showed that ganetespib was efficiently distributed throughout tumor tissue, including hypoxic regions >150 μm from the microvasculature, to inhibit proliferation and induce apoptosis. Importantly, ganetespib showed no evidence of cardiac or liver toxicity. Taken together, this preclinical activity profile indicates that ganetespib may have broad application for a variety of human malignancies, and with select mechanistic and safety advantages over other first- and second-generation Hsp90 inhibitors. Topics: Animals; Antineoplastic Agents; Apoptosis; Benzoquinones; Blotting, Western; Cell Line, Tumor; Cell Survival; Chemical and Drug Induced Liver Injury; Crystallography, X-Ray; Female; Heart; HL-60 Cells; HSP90 Heat-Shock Proteins; Humans; K562 Cells; Lactams, Macrocyclic; Male; Mice; Mice, Nude; Mice, SCID; Neoplasms; Rabbits; Rats; Rats, Sprague-Dawley; Triazoles; Xenograft Model Antitumor Assays | 2012 |
Ganetespib (STA-9090), a nongeldanamycin HSP90 inhibitor, has potent antitumor activity in in vitro and in vivo models of non-small cell lung cancer.
We describe the anticancer activity of ganetespib, a novel non-geldanamycin heat shock protein 90 (HSP90) inhibitor, in non-small cell lung cancer (NSCLC) models.. The activity of ganetespib was compared with that of the geldanamycin 17-AAG in biochemical assays, cell lines, and xenografts, and evaluated in an ERBB2 YVMA-driven mouse lung adenocarcinoma model.. Ganetespib blocked the ability of HSP90 to bind to biotinylated geldanamycin and disrupted the association of HSP90 with its cochaperone, p23, more potently than 17-AAG. In genomically defined NSCLC cell lines, ganetespib caused depletion of receptor tyrosine kinases, extinguishing of downstream signaling, inhibition of proliferation and induction of apoptosis with IC(50) values ranging 2 to 30 nmol/L, substantially lower than those required for 17-AAG (20-3,500 nmol/L). Ganetespib was also approximately 20-fold more potent in isogenic Ba/F3 pro-B cells rendered IL-3 independent by expression of EGFR and ERBB2 mutants. In mice bearing NCI-H1975 (EGFR L858R/T790M) xenografts, ganetespib was rapidly eliminated from plasma and normal tissues but was maintained in tumor with t(1/2) 58.3 hours, supporting once-weekly dosing experiments, in which ganetespib produced greater tumor growth inhibition than 17-AAG. However, after a single dose, reexpression of mutant EGFR occurred by 72 hours, correlating with reversal of antiproliferative and proapoptotic effects. Consecutive day dosing resulted in xenograft regressions, accompanied by more sustained pharmacodynamic effects. Ganetespib also showed activity against mouse lung adenocarcinomas driven by oncogenic ERBB2 YVMA.. Ganetespib has greater potency than 17-AAG and potential efficacy against several NSCLC subsets, including those harboring EGFR or ERBB2 mutation. Topics: Animals; Antineoplastic Agents; Benzoquinones; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Female; HSP90 Heat-Shock Proteins; Humans; Intramolecular Oxidoreductases; Lactams, Macrocyclic; Lung Neoplasms; Mice; Mice, SCID; Prostaglandin-E Synthases; Protein Binding; Protein Stability; Triazoles; Xenograft Model Antitumor Assays | 2012 |
Heat shock protein 90 regulates the expression of Wilms tumor 1 protein in myeloid leukemias.
The aberrant overexpression of Wilms tumor 1 (WT1) in myeloid leukemia plays an important role in blast cell survival and resistance to chemotherapy. High expression of WT1 is also associated with relapse and shortened disease-free survival in patients. However, the mechanisms by which WT1 expression is regulated in leukemia remain unclear. Here, we report that heat shock protein 90 (Hsp90), which plays a critical role in the folding and maturation of several oncogenic proteins, associates with WT1 protein and stabilizes its expression. Pharmacologic inhibition of Hsp90 resulted in ubiquitination and subsequent proteasome-dependant degradation of WT1. RNAi-mediated silencing of WT1 reduced the survival of leukemia cells and increased the sensitivity of these cells to chemotherapy and Hsp90 inhibition. Furthermore, Hsp90 inhibitors 17-AAG [17-(allylamino)-17-demethoxygeldanamycin] and STA-9090 significantly reduced the growth of myeloid leukemia xenografts in vivo and effectively down-regulated the expression of WT1 and its downstream target proteins, c-Myc and Bcl-2. Collectively, our studies identify WT1 as a novel Hsp90 client and support the crucial role for the WT1-Hsp90 interaction in maintaining leukemia cell survival. These findings have significant implications for developing effective therapies for myeloid leukemias and offer a strategy to inhibit the oncogenic functions of WT1 by clinically available Hsp90 inhibitors. Topics: Animals; Antineoplastic Agents, Phytogenic; Apoptosis; Benzoquinones; Cell Line, Tumor; Etoposide; Female; Gene Expression Regulation, Leukemic; Gene Silencing; HSP90 Heat-Shock Proteins; Humans; Lactams, Macrocyclic; Leukemia, Myeloid; Mice; Mice, SCID; Proteasome Endopeptidase Complex; Protein Interaction Domains and Motifs; Protein Structure, Tertiary; Triazoles; WT1 Proteins | 2010 |