Page last updated: 2024-08-26

sr141716 and salvinorin a

sr141716 has been researched along with salvinorin a in 6 studies

Research

Studies (6)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's2 (33.33)29.6817
2010's3 (50.00)24.3611
2020's1 (16.67)2.80

Authors

AuthorsStudies
Cheng, J; McCorvy, JD; Tan, L; Yan, W1
Kabir, M; Kerns, E; Nguyen, K; Shah, P; Sun, H; Wang, Y; Xu, X; Yu, KR1
Itkin, M; Kabir, M; Mathé, EA; Nguyễn, ÐT; Padilha, EC; Shah, P; Shinn, P; Siramshetty, V; Wang, AQ; Williams, J; Xu, X; Yu, KR; Zhao, T1
Braida, D; Gori, E; Guerini-Rocco, C; Limonta, V; Pegorini, S; Sala, M; Zani, A1
Braida, D; Capurro, V; Fadda, P; Fratta, W; Gori, E; Limonta, V; Mascia, P; Parolaro, D; Rubino, T; Sala, M; Zani, A1
Carroll, FI; Gilliam, AF; Gilmour, BP; King, LS; Navarro, HA; Seltzman, HH; Thomas, BF; Twine, CE; Vann, RE; Walentiny, DM; Warner, JA; Wiley, JL1

Reviews

2 review(s) available for sr141716 and salvinorin a

ArticleYear
Biased Ligands of G Protein-Coupled Receptors (GPCRs): Structure-Functional Selectivity Relationships (SFSRs) and Therapeutic Potential.
    Journal of medicinal chemistry, 2018, 11-21, Volume: 61, Issue:22

    Topics: Animals; Drug Discovery; Humans; Ligands; Receptors, G-Protein-Coupled; Signal Transduction; Structure-Activity Relationship

2018
Using in vitro ADME data for lead compound selection: An emphasis on PAMPA pH 5 permeability and oral bioavailability.
    Bioorganic & medicinal chemistry, 2022, 02-15, Volume: 56

    Topics: Administration, Oral; Animals; Betamethasone; Biological Availability; Caco-2 Cells; Cell Membrane Permeability; Cells, Cultured; Dexamethasone; Dogs; Dose-Response Relationship, Drug; Humans; Hydrogen-Ion Concentration; Madin Darby Canine Kidney Cells; Mice; Molecular Structure; Neural Networks, Computer; Ranitidine; Rats; Structure-Activity Relationship; Verapamil

2022

Other Studies

4 other study(ies) available for sr141716 and salvinorin a

ArticleYear
Predictive models of aqueous solubility of organic compounds built on A large dataset of high integrity.
    Bioorganic & medicinal chemistry, 2019, 07-15, Volume: 27, Issue:14

    Topics: Drug Discovery; Organic Chemicals; Pharmaceutical Preparations; Solubility

2019
Hallucinatory and rewarding effect of salvinorin A in zebrafish: kappa-opioid and CB1-cannabinoid receptor involvement.
    Psychopharmacology, 2007, Volume: 190, Issue:4

    Topics: Animals; Behavior, Addictive; Behavior, Animal; Conditioning, Psychological; Diterpenes; Diterpenes, Clerodane; Dose-Response Relationship, Drug; Hallucinogens; Models, Animal; Motor Activity; Naltrexone; Narcotic Antagonists; Piperidines; Pyrazoles; Receptor, Cannabinoid, CB1; Receptors, Opioid, kappa; Reinforcement, Psychology; Reproducibility of Results; Reward; Rimonabant; Swimming; Time Factors; Zebrafish

2007
Involvement of kappa-opioid and endocannabinoid system on Salvinorin A-induced reward.
    Biological psychiatry, 2008, Feb-01, Volume: 63, Issue:3

    Topics: Analysis of Variance; Animals; Antioxidants; Behavior, Animal; Cannabinoid Receptor Modulators; Conditioning, Operant; Diterpenes; Diterpenes, Clerodane; Dopamine; Dose-Response Relationship, Drug; Drug Administration Routes; Drug Interactions; Endocannabinoids; Male; Microdialysis; Motor Activity; Naltrexone; Narcotic Antagonists; Piperidines; Pyrazoles; Rats; Rats, Wistar; Receptors, Opioid, kappa; Reward; Rimonabant; Self Administration

2008
Kappa opioid mediation of cannabinoid effects of the potent hallucinogen, salvinorin A, in rodents.
    Psychopharmacology, 2010, Volume: 210, Issue:2

    Topics: Animals; Calcium; Cannabinoid Receptor Modulators; Discrimination Learning; Diterpenes, Clerodane; Dronabinol; Guanosine 5'-O-(3-Thiotriphosphate); Hypothermia; Locomotion; Male; Mice; Mice, Inbred C57BL; Mice, Inbred ICR; Pain Measurement; Piperidines; Pyrazoles; Radioligand Assay; Receptor, Cannabinoid, CB1; Receptors, Opioid, kappa; Rimonabant; Salvia; Tetrahydroisoquinolines

2010