Page last updated: 2024-08-26

sr141716 and clozapine

sr141716 has been researched along with clozapine in 9 studies

Research

Studies (9)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's2 (22.22)29.6817
2010's6 (66.67)24.3611
2020's1 (11.11)2.80

Authors

AuthorsStudies
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A1
Cantin, LD; Chen, H; Kenna, JG; Noeske, T; Stahl, S; Walker, CL; Warner, DJ1
Afshari, CA; Chen, Y; Dunn, RT; Hamadeh, HK; Kalanzi, J; Kalyanaraman, N; Morgan, RE; van Staden, CJ1
Jadhav, A; Kerns, E; Nguyen, K; Shah, P; Sun, H; Xu, X; Yan, Z; Yu, KR1
Kabir, M; Kerns, E; Nguyen, K; Shah, P; Sun, H; Wang, Y; Xu, X; Yu, KR1
Kabir, M; Kerns, E; Neyra, J; Nguyen, K; Nguyễn, ÐT; Shah, P; Siramshetty, VB; Southall, N; Williams, J; Xu, X; Yu, KR1
Burston, JJ; Howard, DR; Kendler, SH; Selley, DE; Sim-Selley, LJ; Wiley, JL1
Casti, P; Casu, G; Marchese, G; Pani, L; Ruiu, S; Sanna, A; Spada, GP1
Anderson, C; DiBerto, J; Duffy, K; Falls, WA; Fox, JH; Hammack, SE; Hardaway, JA; Hurd, YL; Kash, TL; Magness, ST; Mazzone, CM; McElligott, ZA; McKlveen, JM; Michaelides, M; Pati, D; Tipton, G1

Other Studies

9 other study(ies) available for sr141716 and clozapine

ArticleYear
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
    Chemical research in toxicology, 2010, Volume: 23, Issue:1

    Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship

2010
Mitigating the inhibition of human bile salt export pump by drugs: opportunities provided by physicochemical property modulation, in silico modeling, and structural modification.
    Drug metabolism and disposition: the biological fate of chemicals, 2012, Volume: 40, Issue:12

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Bile Acids and Salts; Cell Line; Chemical and Drug Induced Liver Injury; Humans; Quantitative Structure-Activity Relationship

2012
A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development.
    Toxicological sciences : an official journal of the Society of Toxicology, 2013, Volume: 136, Issue:1

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Transport; Chemical and Drug Induced Liver Injury; Cluster Analysis; Drug-Related Side Effects and Adverse Reactions; Humans; Liver; Male; Multidrug Resistance-Associated Proteins; Pharmacokinetics; Rats; Rats, Sprague-Dawley; Recombinant Proteins; Risk Assessment; Risk Factors; Toxicity Tests

2013
Highly predictive and interpretable models for PAMPA permeability.
    Bioorganic & medicinal chemistry, 2017, 02-01, Volume: 25, Issue:3

    Topics: Artificial Intelligence; Caco-2 Cells; Cell Membrane Permeability; Humans; Models, Biological; Organic Chemicals; Regression Analysis; Support Vector Machine

2017
Predictive models of aqueous solubility of organic compounds built on A large dataset of high integrity.
    Bioorganic & medicinal chemistry, 2019, 07-15, Volume: 27, Issue:14

    Topics: Drug Discovery; Organic Chemicals; Pharmaceutical Preparations; Solubility

2019
Retrospective assessment of rat liver microsomal stability at NCATS: data and QSAR models.
    Scientific reports, 2020, 11-26, Volume: 10, Issue:1

    Topics: Animals; Computer Simulation; Databases, Factual; Drug Discovery; High-Throughput Screening Assays; Liver; Machine Learning; Male; Microsomes, Liver; National Center for Advancing Translational Sciences (U.S.); Pharmaceutical Preparations; Quantitative Structure-Activity Relationship; Rats; Rats, Sprague-Dawley; Retrospective Studies; United States

2020
Antipsychotic-induced alterations in CB1 receptor-mediated G-protein signaling and in vivo pharmacology in rats.
    Neuropharmacology, 2008, Volume: 55, Issue:7

    Topics: Aging; Animals; Antipsychotic Agents; Cells, Cultured; CHO Cells; Clozapine; Cricetinae; Cricetulus; Data Interpretation, Statistical; Dose-Response Relationship, Drug; Dronabinol; Female; GTP-Binding Proteins; Guanosine 5'-O-(3-Thiotriphosphate); Haloperidol; Male; Piperidines; Pyrazoles; Rats; Rats, Long-Evans; Receptor, Cannabinoid, CB1; Rimonabant; Sex Characteristics; Signal Transduction

2008
Delta-9-tetrahydrocannabinol differently affects striatal c-Fos expression following haloperidol or clozapine administration.
    European journal of pharmacology, 2008, Nov-19, Volume: 598, Issue:1-3

    Topics: Animals; Antipsychotic Agents; Blotting, Western; Clozapine; Dronabinol; Gene Expression; Genes, fos; Haloperidol; Immunohistochemistry; Male; Neostriatum; Neurons; Piperidines; Psychotropic Drugs; Pyrazoles; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1; Rimonabant

2008
Acute engagement of G
    Molecular psychiatry, 2018, Volume: 23, Issue:1

    Topics: Animals; Anti-Anxiety Agents; Anxiety; Brain Mapping; Cannabinoid Receptor Antagonists; Clozapine; Dark Adaptation; Disease Models, Animal; Estrenes; Excitatory Postsynaptic Potentials; Exploratory Behavior; Green Fluorescent Proteins; GTP-Binding Protein alpha Subunits, Gq-G11; In Vitro Techniques; Male; Maze Learning; Mice; Mice, Inbred C57BL; Mice, Transgenic; Neurons; Phosphodiesterase Inhibitors; Piperazines; Pyrrolidinones; Receptors, Drug; Rimonabant; RNA, Messenger; Septal Nuclei; Serotonin Receptor Agonists; Signal Transduction; Sodium Channel Blockers; Tetrodotoxin; Vesicular Inhibitory Amino Acid Transport Proteins

2018