sr141716 has been researched along with arachidonyl-2-chloroethylamide in 22 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 16 (72.73) | 29.6817 |
2010's | 6 (27.27) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Allarà, M; Benetti, V; Cascio, MG; Di Marzo, V; Ferrarini, PL; Ghelardini, C; Manera, C; Martinelli, A; Saccomanni, G; Tuccinardi, T; Vivoli, E | 1 |
Chapman, V; Kelly, S | 1 |
Ihenetu, K; Molleman, A; Parsons, ME; Whelan, CJ | 1 |
Ihenetu, K; Molleman, A; Parsons, M; Whelan, C | 1 |
Bouchard, JF; Lagneux, C; Lamontagne, D; Lépicier, P | 1 |
Chapman, V; Jhaveri, MD; Kelly, S; Kendall, DA; Sagar, DR | 1 |
Köfalvi, A; Ledent, C; Sperlágh, B; Vizi, ES | 1 |
Chapman, V; Kelly, S; Kendall, DA; Millns, PJ; O'Shaughnessey, CT; Sagar, DR | 1 |
Ahn, KH; D'Antona, AM; Kendall, DA | 1 |
Fernández-López, D; Lizasoain, I; Lorenzo, P; Martínez-Orgado, J; Moro, MA; Nuñez, E; Romero, J | 1 |
Arévalo-Martín, A; García-Ovejero, D; Gómez-Torres, O; Molina-Holgado, E; Molina-Holgado, F; Moore, JD; Rubio-Araiz, A; Williams, RJ | 1 |
Amato, A; Baldassano, S; Mulè, F; Serio, R | 2 |
Bisogno, T; De Filippis, D; Di Marzo, V; Esposito, G; Iuvone, T; Petrosino, S; Scuderi, C; Steardo, L | 1 |
Baldassano, S; Mule', F; Serio, R | 1 |
Buckley, NE; Cabral, GA; Marciano-Cabral, F; Martin, BR; Raborn, ES | 1 |
Buettner, C; Cheng, B; O'Hare, JD; Scherer, T; Zielinski, E | 1 |
Adams, SA; Bradshaw, HB; Demas, GE; Ho, JM; Smith, NS | 1 |
Ai, R; Chang, CE | 1 |
Abílio, VC; Almeida, V; Calzavara, MB; Crippa, JA; Hallak, JE; Levin, R; Peres, FF; Suiama, MA; Zuardi, AW | 1 |
Balvers, MG; Dwarkasing, J; Lute, C; Meijerink, J; Plastina, P; Poland, M; van Norren, K; Witkamp, RF | 1 |
Ding, X; Dong, X; Song, C; Wu, X; Zheng, L | 1 |
22 other study(ies) available for sr141716 and arachidonyl-2-chloroethylamide
Article | Year |
---|---|
New 1,8-naphthyridine and quinoline derivatives as CB2 selective agonists.
Topics: Animals; Cell Line; Humans; Mice; Naphthyridines; Pain Measurement; Quinolines; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2 | 2007 |
Selective cannabinoid CB1 receptor activation inhibits spinal nociceptive transmission in vivo.
Topics: Action Potentials; Animals; Arachidonic Acids; Male; Nerve Fibers; Nerve Fibers, Myelinated; Nociceptors; Pain; Piperidines; Posterior Horn Cells; Pyrazoles; Rats; Rats, Sprague-Dawley; Receptors, Cannabinoid; Receptors, Drug; Rimonabant; Spinal Cord; Synaptic Transmission | 2001 |
Inhibition of interleukin-8 release in the human colonic epithelial cell line HT-29 by cannabinoids.
Topics: Arachidonic Acids; Benzoxazines; Camphanes; Cannabinoids; Cell Survival; Cyclohexanols; Dose-Response Relationship, Drug; HT29 Cells; Humans; Immunoblotting; Indoles; Interleukin-8; Kinetics; Morpholines; Naphthalenes; Piperidines; Pyrazoles; Receptors, Cannabinoid; Receptors, Drug; Rimonabant; Tumor Necrosis Factor-alpha | 2003 |
Pharmacological characterisation of cannabinoid receptors inhibiting interleukin 2 release from human peripheral blood mononuclear cells.
Topics: Arachidonic Acids; Benzoxazines; Camphanes; Cell Survival; Cyclohexanols; Dose-Response Relationship, Drug; Dronabinol; Humans; Indoles; Interleukin-2; Leukocytes, Mononuclear; Morpholines; Naphthalenes; Phytohemagglutinins; Piperidines; Pyrazoles; Receptors, Cannabinoid; Receptors, Drug; Rimonabant | 2003 |
Endocannabinoids protect the rat isolated heart against ischaemia.
Topics: Amides; Animals; Arachidonic Acids; Biomarkers; Blotting, Western; Camphanes; Cannabinoid Receptor Modulators; Endocannabinoids; Ethanolamines; Glycerides; Heart; Imidazoles; L-Lactate Dehydrogenase; Mitogen-Activated Protein Kinase 3; Mitogen-Activated Protein Kinases; Myocardial Infarction; Myocardial Ischemia; Myocardial Reperfusion Injury; p38 Mitogen-Activated Protein Kinases; Palmitic Acids; Piperidines; Protein Kinase C; Pyrazoles; Pyridines; Rats; Rats, Sprague-Dawley; Rimonabant; Signal Transduction | 2003 |
Activation of peripheral cannabinoid CB1 receptors inhibits mechanically evoked responses of spinal neurons in noninflamed rats and rats with hindpaw inflammation.
Topics: Animals; Arachidonic Acids; Carrageenan; Diterpenes; Dose-Response Relationship, Drug; Drug Interactions; Evoked Potentials; Hindlimb; Inflammation; Male; Neural Inhibition; Physical Stimulation; Piperidines; Posterior Horn Cells; Pyrazoles; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1; Receptors, Drug; Rimonabant; Spinal Cord; Time Factors | 2003 |
Cannabinoids inhibit the release of [3H]glutamate from rodent hippocampal synaptosomes via a novel CB1 receptor-independent action.
Topics: Analgesics; Animals; Arachidonic Acids; Benzoxazines; Cannabinoids; Capsaicin; Chromatography, High Pressure Liquid; Cyclohexanols; Dose-Response Relationship, Drug; Drug Interactions; Glutamic Acid; Hippocampus; Male; Morpholines; Naphthalenes; Piperidines; Pyrazoles; Radioactivity; Rats; Rats, Wistar; Receptor, Cannabinoid, CB1; Rimonabant; Synaptosomes; Tritium | 2003 |
Inhibitory effects of CB1 and CB2 receptor agonists on responses of DRG neurons and dorsal horn neurons in neuropathic rats.
Topics: Action Potentials; Animals; Arachidonic Acids; Behavior, Animal; Calcium; Camphanes; Cannabinoids; Capsaicin; Cells, Cultured; Diagnostic Imaging; Dose-Response Relationship, Drug; Drug Interactions; Evoked Potentials; Ganglia, Spinal; Hyperalgesia; Ligation; Male; Neural Inhibition; Neurons; Pain Measurement; Piperidines; Posterior Horn Cells; Pyrazoles; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Rimonabant; Spinal Cord Diseases; Touch | 2005 |
Mutations of CB1 T210 produce active and inactive receptor forms: correlations with ligand affinity, receptor stability, and cellular localization.
Topics: Amino Acid Sequence; Amino Acid Substitution; Arachidonic Acids; Benzoxazines; Cells, Cultured; Cyclic AMP; Dronabinol; Drug Stability; Guanosine 5'-O-(3-Thiotriphosphate); Hot Temperature; Humans; Kidney; Ligands; Morpholines; Mutation; Naphthalenes; Piperidines; Pyrazoles; Receptor, Cannabinoid, CB1; Rimonabant; Threonine | 2006 |
Characterization of the neuroprotective effect of the cannabinoid agonist WIN-55212 in an in vitro model of hypoxic-ischemic brain damage in newborn rats.
Topics: Anaerobiosis; Animals; Animals, Newborn; Arachidonic Acids; Benzoxazines; Brain; Brain Chemistry; Brain Ischemia; Cannabinoid Receptor Agonists; Cannabinoids; Disease Models, Animal; Hypoxia, Brain; L-Lactate Dehydrogenase; Morpholines; Naphthalenes; Neuroprotective Agents; Nitric Oxide Synthase Type II; Piperidines; Pyrazoles; Rats; Rats, Wistar; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Rimonabant; Tumor Necrosis Factor-alpha | 2006 |
CB2 cannabinoid receptors promote mouse neural stem cell proliferation.
Topics: Animals; Arachidonic Acids; Camphanes; Cell Division; Cells, Cultured; Cerebral Cortex; Dronabinol; Excitatory Amino Acid Antagonists; Lipoprotein Lipase; Mice; Neurons; Phosphatidylinositol 3-Kinases; Piperidines; Proto-Oncogene Proteins c-akt; Pyrazoles; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Rimonabant; Signal Transduction; Spheroids, Cellular; Stem Cells | 2007 |
Evidence for a modulatory role of cannabinoids on the excitatory NANC neurotransmission in mouse colon.
Topics: Animals; Arachidonic Acids; Benzoxazines; Cannabinoid Receptor Modulators; Cannabinoids; Colon; Dose-Response Relationship, Drug; Electric Stimulation; Endocannabinoids; Enteric Nervous System; Excitatory Postsynaptic Potentials; Gastrointestinal Motility; In Vitro Techniques; Indoles; Inhibitory Postsynaptic Potentials; Mice; Mice, Inbred C57BL; Morpholines; Naphthalenes; Neuromuscular Junction; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Receptors, Tachykinin; Rimonabant; Synaptic Transmission; Tachykinins | 2007 |
Cannabinoid CB1 receptor stimulation affords neuroprotection in MPTP-induced neurotoxicity by attenuating S100B up-regulation in vitro.
Topics: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine; Amidohydrolases; Animals; Antibodies; Apoptosis; Arachidonic Acids; Calcium; Caspase 3; Cell Communication; Cell Differentiation; Cell Proliferation; Cell Survival; Coculture Techniques; Culture Media, Conditioned; Dose-Response Relationship, Drug; Endocannabinoids; Enzyme Activation; Enzyme Inhibitors; Indoles; MPTP Poisoning; Nerve Growth Factors; Neuroglia; Neurons; Neuroprotective Agents; PC12 Cells; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Rats; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Rimonabant; RNA Interference; RNA, Small Interfering; S100 Calcium Binding Protein beta Subunit; S100 Proteins; Serotonin; Time Factors; Up-Regulation | 2007 |
Involvement of CB1 and CB2 receptors in the modulation of cholinergic neurotransmission in mouse gastric preparations.
Topics: Animals; Arachidonic Acids; Benzoxazines; Cannabinoid Receptor Modulators; Cannabinoids; Cholinergic Fibers; Electric Stimulation; Endocannabinoids; Excitatory Postsynaptic Potentials; Gastrointestinal Motility; In Vitro Techniques; Indoles; Inhibitory Postsynaptic Potentials; Male; Mice; Mice, Inbred C57BL; Morpholines; Naphthalenes; Neuromuscular Junction; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Receptors, Presynaptic; Rimonabant; Stomach; Synaptic Transmission | 2007 |
Cannabinoid CB(1) receptor activation modulates spontaneous contractile activity in mouse ileal longitudinal muscle.
Topics: Animals; Apamin; Arachidonic Acids; Atropine; Cannabinoid Receptor Modulators; Cannabinoids; Dose-Response Relationship, Drug; Endocannabinoids; Hexamethonium; Ileum; In Vitro Techniques; Indoles; Male; Mice; Mice, Inbred C57BL; Muscle Contraction; Muscle, Smooth; NG-Nitroarginine Methyl Ester; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Rimonabant; Tetrodotoxin | 2008 |
The cannabinoid delta-9-tetrahydrocannabinol mediates inhibition of macrophage chemotaxis to RANTES/CCL5: linkage to the CB2 receptor.
Topics: Animals; Arachidonic Acids; Camphanes; Chemokine CCL5; Chemotaxis; Cyclohexanols; Dronabinol; Female; Macrophages, Peritoneal; Mice; Mice, Inbred C57BL; Mice, Knockout; Piperidines; Pyrazoles; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Receptors, CCR1; Receptors, CCR5; Receptors, G-Protein-Coupled; Rimonabant; RNA, Messenger; Signal Transduction | 2008 |
Central endocannabinoid signaling regulates hepatic glucose production and systemic lipolysis.
Topics: Animals; Arachidonic Acids; Blotting, Western; Cannabinoid Receptor Agonists; Cannabinoid Receptor Antagonists; Cannabinoid Receptor Modulators; Endocannabinoids; Glucose; Infusions, Intraventricular; Lipolysis; Liver; Male; Piperidines; Pyrazoles; Rats; Rats, Sprague-Dawley; Receptors, Cannabinoid; Rimonabant; Signal Transduction | 2011 |
Photoperiodic changes in endocannabinoid levels and energetic responses to altered signalling at CB1 receptors in Siberian hamsters.
Topics: Animals; Arachidonic Acids; Body Weight; Cannabinoid Receptor Modulators; Cricetinae; Drug Evaluation, Preclinical; Eating; Endocannabinoids; Energy Metabolism; Female; Intra-Abdominal Fat; Male; Phodopus; Photoperiod; Piperidines; Pyrazoles; Receptor, Cannabinoid, CB1; Rimonabant; Signal Transduction | 2012 |
Ligand-specific homology modeling of human cannabinoid (CB1) receptor.
Topics: Amino Acid Sequence; Arachidonic Acids; Benzoxazines; Binding Sites; Dronabinol; Humans; Ligands; Molecular Docking Simulation; Molecular Sequence Data; Morpholines; Naphthalenes; Piperidines; Protein Binding; Protein Structure, Secondary; Protein Structure, Tertiary; Pyrazoles; Receptor, Cannabinoid, CB1; Receptors, Adenosine A2; Receptors, Adrenergic, beta-2; Rhodopsin; Rimonabant; Sequence Alignment; Structural Homology, Protein; Structure-Activity Relationship; Thermodynamics | 2012 |
Effects of cannabinoid and vanilloid drugs on positive and negative-like symptoms on an animal model of schizophrenia: the SHR strain.
Topics: Analysis of Variance; Animals; Arachidonic Acids; Benzoxazines; Cannabinoid Receptor Modulators; Capsaicin; Disease Models, Animal; Dose-Response Relationship, Drug; Interpersonal Relations; Male; Morpholines; Motor Activity; Naphthalenes; Piperidines; Pyrazoles; Rats; Rats, Inbred SHR; Rats, Wistar; Rimonabant; Schizophrenia; Schizophrenic Psychology; TRPV Cation Channels | 2014 |
Inhibition of COX-2-mediated eicosanoid production plays a major role in the anti-inflammatory effects of the endocannabinoid N-docosahexaenoylethanolamine (DHEA) in macrophages.
Topics: Anilides; Animals; Arachidonic Acids; Camphanes; Cell Line; Cells, Cultured; Cyclooxygenase 2; Cyclooxygenase 2 Inhibitors; Dehydroepiandrosterone; Dinoprostone; Endocannabinoids; Indenes; Interferon-beta; Lipopolysaccharides; Macrophages; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Myeloid Differentiation Factor 88; NF-kappa B; Nitric Oxide; Piperidines; PPAR gamma; Pyrazoles; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Rimonabant; Rosiglitazone; Thiazolidinediones; Toll-Like Receptor 3; Toll-Like Receptor 4 | 2015 |
Effects of Chronic Alcohol Exposure on the Modulation of Ischemia-Induced Glutamate Release via Cannabinoid Receptors in the Dorsal Hippocampus.
Topics: Animals; Arachidonic Acids; Cannabinoids; Dose-Response Relationship, Drug; Ethanol; Glutamic Acid; Hippocampus; Indoles; Infarction, Middle Cerebral Artery; Ischemia; Male; Piperidines; Pyrazoles; Rats; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Rimonabant | 2015 |