sr-144528 and glyceryl-2-arachidonate

sr-144528 has been researched along with glyceryl-2-arachidonate* in 19 studies

Reviews

2 review(s) available for sr-144528 and glyceryl-2-arachidonate

ArticleYear
New perspectives in the studies on endocannabinoid and cannabis: 2-arachidonoylglycerol as a possible novel mediator of inflammation.
    Journal of pharmacological sciences, 2004, Volume: 96, Issue:4

    2-Arachidonoylglycerol is an endogenous ligand for the cannabinoid receptors. To date, two types of cannabinoid receptors (CB1 and CB2) have been identified. The CB1 receptor is assumed to be involved in the attenuation of synaptic transmission. On the other hand, the physiological roles of the CB2 receptor, which is abundantly expressed in several types of inflammatory cells and immunocompetent cells, have not yet been fully elucidated. Recently, we investigated in detail possible physiological roles of the CB2 receptor and 2-arachidonoylglycerol in inflammation. We found that 2-arachidonoylglycerol induces the activation of p42/44 and p38 mitogen-activated protein kinases and c-Jun N-terminal kinase; actin rearrangement and morphological changes; augmented production of chemokines in HL-60 cells; and the migration of HL-60 cells differentiated into macrophage-like cells, human monocytes, natural killer cells, and eosinophils. We also found that the level of 2-arachidonoylglycerol in mouse ear is markedly elevated following treatment with 12-O-tetradecanoylphorbol 13-acetate, which induces acute inflammation. Notably, the inflammation induced by 12-O-tetradecanoylphorbol 13-acetate was blocked by treatment with SR144528, a CB2-receptor antagonist. Similar results were obtained with an allergic inflammation model in mice. These results strongly suggest that 2-arachidonoylglycerol plays essential roles in the stimulation of various inflammatory reactions in vivo.

    Topics: Actins; Animals; Arachidonic Acids; Camphanes; Cell Movement; Chemokines; Endocannabinoids; Enzyme Activation; Glycerides; Humans; Inflammation Mediators; Mitogen-Activated Protein Kinases; Pyrazoles; Receptor, Cannabinoid, CB2; RNA, Messenger

2004
Cannabinoids and pain.
    Current opinion in investigational drugs (London, England : 2000), 2001, Volume: 2, Issue:3

    Recent advances have dramatically increased our understanding of cannabinoid pharmacology: the psychoactive constituents of Cannabis sativa have been isolated, synthetic cannabinoids described and an endocannabinoid system identified, together with its component receptors, ligands and their biochemistry. Strong laboratory evidence now underwrites anecdotal claims of cannabinoid analgesia in inflammatory and neuropathic pain. Sites of analgesic action have been identified in brain, spinal cord and the periphery, with the latter two presenting attractive targets for divorcing the analgesic and psychotrophic effects of cannabinoids. Clinical trials are now required, but are hindered by a paucity of cannabinoids of suitable bioavailability and therapeutic ratio.

    Topics: Amides; Amidohydrolases; Analgesics; Animals; Arachidonic Acids; Benzoxazines; Brain; Camphanes; Cannabinoid Receptor Modulators; Cannabinoids; Cell Membrane; Clinical Trials as Topic; Disease Models, Animal; Drug Design; Drug Interactions; Endocannabinoids; Enzyme Inhibitors; Ethanolamines; Glycerides; Humans; Injections, Spinal; Molecular Structure; Morpholines; Naphthalenes; Pain; Palmitates; Palmitic Acids; Piperidines; Plant Extracts; Polyunsaturated Alkamides; Pyrazoles; Receptors, Cannabinoid; Receptors, Drug; Rimonabant; Spinal Cord

2001

Other Studies

17 other study(ies) available for sr-144528 and glyceryl-2-arachidonate

ArticleYear
Endocannabinoid 2-arachidonoylglycerol protects neurons against β-amyloid insults.
    Neuroscience, 2011, Mar-31, Volume: 178

    While endocannabinoid modulation of both GABAergic and glutamatergic synaptic transmission and plasticity has been extensively investigated, our understanding of the role of endocannabinoids in protecting neurons from harmful insults remains limited. 2-Arachidonoylglycerol (2-AG), the most abundant endogenous ligand and a full agonist for cannabinoid receptors, exhibits anti-inflammatory and neuroprotective effects via a CB1 receptor (CB1R)-mediated mechanism. However, it is still not clear whether 2-AG is also able to protect neurons from β-amyloid (Aβ)-induced neurodegeneration. Here, we demonstrate that exogenous application of 2-AG significantly protected hippocampal neurons in culture against Aβ-induced neurodegeneration and apoptosis. This neuroprotective effect was blocked by SR141716 (SR-1), a selective CB1R antagonist, but not by SR144528 (SR-2), a selective CB2R antagonist, or capsazepine (CAP), a selective transient receptor potential cation channels, subfamily V, member 1 (TRPV1) receptor antagonist. To determine whether endogenous 2-AG is capable of protecting neurons from Aβ insults, hippocampal neurons in culture were treated with URB602 or JZL184, selective inhibitors of monoacylglycerol lipase (MAGL), the enzyme hydrolyzing 2-AG. MAGL inhibition that elevates endogenous levels of 2-AG also significantly reduced Aβ-induced neurodegeneration and apoptosis. The 2-AG-produced neuroprotective effects appear to be mediated via CB1R-dependent suppression of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and nuclear factor-κB (NF-κB) phosphorylation and cyclooxygenase-2 (COX-2) expression. Our results suggest that elevation of endogenous 2-AG by inhibiting its hydrolysis has potential as a novel efficacious therapeutic approach for preventing, ameliorating or treating Alzheimer's disease.

    Topics: Amyloid beta-Peptides; Animals; Apoptosis; Arachidonic Acids; Benzodioxoles; Biphenyl Compounds; Camphanes; Cannabinoid Receptor Antagonists; Cannabinoid Receptor Modulators; Capsaicin; Cell Culture Techniques; Drug Interactions; Endocannabinoids; Glycerides; Hippocampus; Monoacylglycerol Lipases; Nerve Degeneration; Peptide Fragments; Piperidines; Pyrazoles; Rats; Rats, Sprague-Dawley; Rimonabant; Signal Transduction

2011
Aqueous humor outflow effects of 2-arachidonylglycerol.
    Experimental eye research, 2008, Volume: 87, Issue:2

    This study was conducted to test the effects of 2-arachidonylglycerol (2-AG), an endocannabinoid, on aqueous humor outflow facility, to study the cellular mechanisms of 2-AG, and to investigate the possible existence and activity of monoacylgylcerol lipase (MGL), a 2-AG metabolic enzyme, in the trabecular meshwork (TM). The effects of 2-AG on aqueous humor outflow facility were measured using an anterior segment perfused organ culture model. The expression and activity of MGL in TM tissues were assessed using Western blot analysis and an enzyme activity assay respectively. 2-AG induced activation of p42/44 mitogen-activated protein (MAP) kinase was determined by Western blot analysis using an anti-phospho p42/44 MAP kinase antibody. AlexaFluor 488-labeled phalloidin staining was used to examine actin filament in cultured TM cells. Administration of 10nM of 2-AG caused a transient enhancement of aqueous humor outflow. In the presence of 100nM of LY2183240, an inhibitor of MGL, the effect of 10nM of 2-AG on outflow was prolonged by at least 4h. The 2-AG-induced enhancement of outflow was blocked by SR141716A, a CB1 antagonist, and SR144528, a CB2 antagonist. In Western blot studies, a 35kDa band representing MGL was detected on TM tissues with an anti-MGL antibody. The 2-AG enzymatic hydrolysis activity was detected in TM tissues and this activity was reduced by 70.1+/-5.3% with the addition of 100 nM of LY2183240. Treatment of trabecular meshwork cells with 10nM of 2-AG plus 100 nM LY2183240 for 5h evoked phosphorylation of p42/44 MAP kinase. The 2-AG-induced enhancement of p42/44 MAP kinase phosphorylation was blocked by pretreatment with SR141716A, SR144528, as well as PD98059, an inhibitor of the p42/44 MAP kinase pathway. In addition, the outflow-enhancing effect of 2-AG was blocked by pretreatment with PD98059. Furthermore, treatment with 2-AG plus LY2183240 caused rounding of TM cells and a reduction of actin stress fibers in TM cells. Pretreatment with SR141716A, SR144528, and PD98059 blocked these 2-AG-induced morphology and cytoskeleton changes in TM cells. In conclusion, the results from this study demonstrate that administration of 2-AG increases aqueous humor outflow facility and this effect of 2-AG is mediated through both the CB1 and CB2 cannabinoid receptors. In addition, this study reveals the existence and the activity of MGL, a 2-AG metabolizing enzyme, in the TM tissues. Furthermore, this study suggests that 2-AG-induced enhancement of o

    Topics: Animals; Aqueous Humor; Arachidonic Acids; Calcium-Calmodulin-Dependent Protein Kinases; Camphanes; Cannabinoid Receptor Modulators; Cytoskeleton; Dose-Response Relationship, Drug; Endocannabinoids; Enzyme Inhibitors; Flavonoids; Glycerides; Monoacylglycerol Lipases; Organ Culture Techniques; Piperidines; Pyrazoles; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Rimonabant; Signal Transduction; Sus scrofa; Trabecular Meshwork

2008
Depolarization-induced rapid generation of 2-arachidonoylglycerol, an endogenous cannabinoid receptor ligand, in rat brain synaptosomes.
    Journal of biochemistry, 2007, Volume: 141, Issue:5

    2-arachidonoylglycerol (2-AG) is an endogenous ligand for the cannabinoid receptors with a variety of potent biological activities. In this study, we first examined the effects of potassium-induced depolarization on the level of 2-AG in rat brain synaptosomes. We found that a significant amount of 2-AG was generated in the synaptosomes following depolarization. Notably, depolarization did not affect the levels of other molecular species of monoacylglycerols. Furthermore, the level of anandamide was very low and did not change markedly following depolarization. It thus appeared that the depolarization-induced accelerated generation is a unique feature of 2-AG. We obtained evidence that phospholipase C is involved in the generation of 2-AG in depolarized synaptosomes: U73122, a phospholipase C inhibitor, markedly reduced the depolarization-induced generation of 2-AG, and the level of diacylglycerol was rapidly elevated following depolarization. A significant amount of 2-AG was released from synaptosomes upon depolarization. Interestingly, treatment of the synaptosomes with SR141716A, a CB1 receptor antagonist, augmented the release of glutamate from depolarized synaptosomes. These results strongly suggest that the endogenous ligand for the cannabinoid receptors, i.e. 2-AG, generated through increased phospholipid metabolism upon depolarization, plays an important role in attenuating glutamate release from the synaptic terminals by acting on the CB1 receptor.

    Topics: Animals; Arachidonic Acids; Brain; Calcimycin; Calcium Channel Blockers; Camphanes; Diglycerides; Endocannabinoids; Estrenes; Fatty Acids; Glycerides; Male; Membrane Potentials; Neuromuscular Depolarizing Agents; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Pyrrolidinones; Rats; Rats, Wistar; Receptors, Cannabinoid; Rimonabant; Synaptosomes

2007
Attenuation of allergic contact dermatitis through the endocannabinoid system.
    Science (New York, N.Y.), 2007, Jun-08, Volume: 316, Issue:5830

    Allergic contact dermatitis affects about 5% of men and 11% of women in industrialized countries and is one of the leading causes for occupational diseases. In an animal model for cutaneous contact hypersensitivity, we show that mice lacking both known cannabinoid receptors display exacerbated allergic inflammation. In contrast, fatty acid amide hydrolase-deficient mice, which have increased levels of the endocannabinoid anandamide, displayed reduced allergic responses in the skin. Cannabinoid receptor antagonists exacerbated allergic inflammation, whereas receptor agonists attenuated inflammation. These results demonstrate a protective role of the endocannabinoid system in contact allergy in the skin and suggest a target for therapeutic intervention.

    Topics: Animals; Arachidonic Acids; Camphanes; Cannabinoid Receptor Modulators; Cannabinoids; Chemokines; Dermatitis, Allergic Contact; Dinitrofluorobenzene; Disease Models, Animal; Down-Regulation; Dronabinol; Endocannabinoids; Female; Glycerides; Mice; Mice, Inbred C57BL; Mice, Knockout; Oligonucleotide Array Sequence Analysis; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Rimonabant; Skin; Up-Regulation

2007
2-Arachidonoylglycerol enhances the phagocytosis of opsonized zymosan by HL-60 cells differentiated into macrophage-like cells.
    Biological & pharmaceutical bulletin, 2007, Volume: 30, Issue:7

    2-Arachidonoylglycerol is an endogenous ligand for the cannabinoid receptors (CB1 and CB2). While evidence is accumulating that the CB1 receptor plays important regulatory roles in various nervous tissues and cells, the physiological roles of the CB2 receptor, which is abundantly expressed in the immune system, are yet to be determined. In this study, we examined in detail the effect of 2-arachidonoylglycerol on the phagocytosis of opsonized zymosan by HL-60 cells that had differentiated into macrophage-like cells. We found that the addition of 2-arachidonoylglycerol augmented the phagocytosis of opsonized zymosan by the differentiated HL-60 cells. The effect was observed from 1 nM and increased with increasing concentrations of 2-arachidonoylglycerol. Treatment of the cells with SR144528 or pertussis toxin abolished the effect of 2-arachidonoylglycerol, indicating that the CB2 receptor and Gi/o are involved in the augmented phagocytosis. Phosphatidylinositol 3-kinase and extracellular signal-regulated kinase were also suggested to be involved; treatment of the cells with wortmannin or PD98059 abrogated the 2-arachidonoylglycerol-augmented phagocytosis. These results strongly suggest that 2-arachidonoylglycerol, derived from stimulated inflammatory cells, has an important role in augmenting the phagocytosis of invading microorganisms by macrophages/monocytes thereby stimulating inflammatory reactions and immune responses.

    Topics: Androstadienes; Arachidonic Acids; Camphanes; CD18 Antigens; Cell Differentiation; Endocannabinoids; Extracellular Signal-Regulated MAP Kinases; Glycerides; HL-60 Cells; Humans; Macrophages; p38 Mitogen-Activated Protein Kinases; Pertussis Toxin; Phagocytosis; Pyrazoles; Wortmannin; Zymosan

2007
Evidence for the involvement of the cannabinoid CB2 receptor and its endogenous ligand 2-arachidonoylglycerol in 12-O-tetradecanoylphorbol-13-acetate-induced acute inflammation in mouse ear.
    The Journal of biological chemistry, 2005, May-06, Volume: 280, Issue:18

    2-Arachidonoylglycerol is an endogenous ligand for the cannabinoid receptors. Two types of cannabinoid receptors have been identified to date. The CB1 receptor is abundantly expressed in the brain, and assumed to be involved in the attenuation of neurotransmission. On the other hand, the physiological roles of the CB2 receptor, mainly expressed in several types of inflammatory cells and immunocompetent cells, have not yet been fully elucidated. In this study, we investigated possible pathophysiological roles of the CB2 receptor and 2-arachidonoylglycerol in acute inflammation in mouse ear induced by the topical application of 12-O-tetradecanoylphorbol-13-acetate. We found that the amount of 2-arachidonoylglycerol was markedly augmented in inflamed mouse ear. In contrast, the amount of anandamide, another endogenous cannabinoid receptor ligand, did not change markedly. Importantly, 12-O-tetradecanoylphorbol-13-acetate-induced ear swelling was blocked by treatment with SR144528, a CB2 receptor antagonist, suggesting that the CB2 receptor is involved in the swelling. On the other hand, the application of AM251, a CB1 receptor antagonist, exerted only a weak suppressive effect. The application of SR144528 also reduced the 12-O-tetradecanoylphorbol-13-acetate-induced production of leukotriene B(4) and the infiltration of neutrophils in the mouse ear. Interestingly, the application of 2-arachidonoylglycerol to the mouse ear evoked swelling, which was abolished by treatment with SR144528. Nitric oxide was suggested to be involved in the ear swelling induced by 2-arachidonoylglycerol. These results suggest that the CB2 receptor and 2-arachidonoylglycerol play crucial stimulative roles during the course of inflammatory reactions.

    Topics: Administration, Topical; Animals; Arachidonic Acids; Camphanes; Cannabinoid Receptor Modulators; Dose-Response Relationship, Drug; Ear; Endocannabinoids; Glycerides; Inflammation; Ligands; Male; Mice; Mice, Inbred ICR; Pyrazoles; Receptor, Cannabinoid, CB2; Tetradecanoylphorbol Acetate

2005
Endogenous cannabinoid receptor ligand induces the migration of human natural killer cells.
    Journal of biochemistry, 2005, Volume: 137, Issue:2

    2-Arachidonoylglycerol is an endogenous ligand for the cannabinoid receptors (CB1 and CB2). Evidence is gradually accumulating which shows that 2-arachidonoylglycerol plays important physiological roles in several mammalian tissues and cells, yet the details remain ambiguous. In this study, we first examined the effects of 2-arachidonoylglycerol on the motility of human natural killer cells. We found that 2-arachidonoylglycerol induces the migration of KHYG-1 cells (a natural killer leukemia cell line) and human peripheral blood natural killer cells. The migration of natural killer cells induced by 2-arachidonoylglycerol was abolished by treating the cells with SR144528, a CB2 receptor antagonist, suggesting that the CB2 receptor is involved in the 2-arachidonoylglycerol-induced migration. In contrast to 2-arachidonoylglycerol, anandamide, another endogenous cannabinoid receptor ligand, did not induce the migration. Delta9-tetrahydrocannabinol, a major psychoactive constituent of marijuana, also failed to induce the migration; instead, the addition of delta9-tetrahydrocannabinol together with 2-arachidonoylglycerol abolished the migration induced by 2-arachidonoylglycerol. It is conceivable that the endogenous ligand for the cannabinoid receptor, that is, 2-arachidonoylglycerol, affects natural killer cell functions such as migration, thereby contributing to the host-defense mechanism against infectious viruses and tumor cells.

    Topics: Arachidonic Acids; Camphanes; Cell Line; Cell Movement; Endocannabinoids; Glycerides; Humans; Killer Cells, Natural; Ligands; Pyrazoles; Receptor, Cannabinoid, CB2

2005
2-Arachidonoylglycerol, an endogenous cannabinoid receptor ligand, induces accelerated production of chemokines in HL-60 cells.
    Journal of biochemistry, 2004, Volume: 135, Issue:4

    2-Arachidonoylglycerol is an endogenous ligand for the cannabinoid receptors (CB1 and CB2). Previously, we provided evidence that 2-arachidonoylglycerol, but not anandamide (N-arachidonoylethanolamine), is the true natural ligand for the cannabinoid receptors. In the present study, we examined in detail the effects of 2-arachidonoylglycerol on the production of chemokines in human promyelocytic leukemia HL-60 cells. We found that 2-arachidonoylglycerol induced a marked acceleration in the production of interleukin 8. The effect of 2-arachidonoylglycerol was blocked by treatment of the cells with SR144528, a cannabinoid CB2 receptor antagonist, indicating that the effect of 2-arachidonoylglycerol is mediated through the CB2 receptor. Augmented production of interleukin 8 was also observed with CP55940, a synthetic cannabinoid, and an ether-linked analog of 2-arachidonoylglycerol. On the other hand, neither anandamide nor the free arachidonic acid induced the enhanced production of interleukin 8. A similar effect of 2-arachidonoylglycerol was observed in the case of the production of macrophage-chemotactic protein-1. The accelerated production of interleukin 8 by 2-arachidonoylglycerol was observed not only in undifferentiated HL-60 cells, but also in HL-60 cells differentiated into macrophage-like cells. Noticeably, 2-arachidonoylglycerol and lipopolysaccharide acted synergistically to induce the dramatically augmented production of interleukin 8. These results strongly suggest that the CB2 receptor and its physiological ligand, i.e., 2-arachidonoylglycerol, play important regulatory roles such as stimulation of the production of chemokines in inflammatory cells and immune-competent cells. Detailed studies on the cannabinoid receptor system are thus essential to gain a better understanding of the precise regulatory mechanisms of inflammatory reactions and immune responses.

    Topics: Arachidonic Acid; Arachidonic Acids; Blotting, Northern; Calcitriol; Camphanes; Cell Differentiation; Chemokine CCL2; Chemokines; Cyclohexanols; Dose-Response Relationship, Drug; Endocannabinoids; Enzyme-Linked Immunosorbent Assay; Gene Expression; Glycerides; HL-60 Cells; Humans; Interleukin-8; Lipopolysaccharides; Polyunsaturated Alkamides; Pyrazoles; Receptor, Cannabinoid, CB2; RNA, Messenger; Time Factors

2004
2-arachidonoylglycerol, an endogenous cannabinoid receptor ligand, induces the migration of EoL-1 human eosinophilic leukemia cells and human peripheral blood eosinophils.
    Journal of leukocyte biology, 2004, Volume: 76, Issue:5

    2-arachidonoylglycerol (2-AG) is an endogenous cannabinoid receptor ligand. To date, two types of cannabinoid receptors have been identified: the CB1 receptor, abundantly expressed in the brain, and the CB2 receptor, expressed in various lymphoid tissues such as the spleen. The CB1 receptor has been assumed to play an important role in the regulation of synaptic transmission, whereas the physiological roles of the CB2 receptor remain obscure. In this study, we examined whether the CB2 receptor is present in human eosinophils and found that the CB2 receptor is expressed in human peripheral blood eosinophils. In contrast, human neutrophils do not contain a significant amount of the CB2 receptor. We then examined the effect of 2-AG on the motility of eosinophils. We found that 2-AG induces the migration of human eosinophilic leukemia EoL-1 cells. The migration evoked by 2-AG was abolished in the presence of SR144528, a CB2 receptor antagonist, or by pretreatment of the cells with pertussis toxin, suggesting that the CB2 receptor and Gi/o are involved in the 2-AG-induced migration. The migration of EoL-1 cells induced by 2-AG was suggested to be a result of chemotaxis. In contrast to 2-AG, neither anandamide nor free arachidonic acid elicited the migration. Finally, we examined the effect of 2-AG on human peripheral blood eosinophils and neutrophils and found that 2-AG induces migration of eosinophils but not neutrophils. These results suggest that the CB2 receptor and its endogenous ligand 2-AG may be closely involved in allergic inflammation accompanied by the infiltration of eosinophils.

    Topics: Arachidonic Acid; Arachidonic Acids; Camphanes; Cell Line, Tumor; Chemotaxis, Leukocyte; Endocannabinoids; Eosinophils; Glycerides; GTP-Binding Protein alpha Subunits, Gi-Go; Humans; Hypereosinophilic Syndrome; Hypersensitivity; Neutrophils; Pertussis Toxin; Polyunsaturated Alkamides; Pyrazoles; Receptor, Cannabinoid, CB2; RNA, Messenger

2004
Human brain endothelium: coexpression and function of vanilloid and endocannabinoid receptors.
    Brain research. Molecular brain research, 2004, Dec-06, Volume: 132, Issue:1

    The arachidonic acid derivative, 2-arachidonoyl-glycerol (2-AG), was initially isolated from gut and brain; it is also produced and released from blood and vascular cells. Many of the 2-AG-induced cellular responses (i.e., neuromodulation, cytoprotection and vasodilation) are mediated by cannabinoid receptors CB1 and CB2. The findings presented here demonstrate the expression of CB1, CB2 and TRPV1 receptors on cerebromicrovascular endothelial cells (HBEC). The expression of TRPV1, CB1 and CB2 receptor mRNA and proteins were demonstrated by RT-PCR and polyclonal antibodies, respectively. The endocannabinoid 2-AG, and other related compounds [anandamide (ANA), methanandamide (m-ANA), N-(4-hydroxyphenyl-arachidonyl-ethanolamide) (AM404) and capsaicin] dose-dependently stimulated Ca2+ influx in HBEC. The selective TRPV1 receptor antagonist (capsazepine), CB1 receptor antagonist (SR141716A) and CB2 receptor antagonist (SR144528) inhibited these responses. The effects of capsaicin, a specific agonist for TRPV1 receptors, were inhibited by capsazepine, but only weakly by CB1 or CB2 receptor antagonists. 2-AG also induced phosphorylation of vasodilator-stimulated phosphoprotein (VASP); this response was mediated by VR1 receptors. These studies clearly indicate that 2-AG and other related compounds may function as agonists on VR1 receptors, as well as CB1 and CB2 receptors, and implicated these factors in various HBEC functions.

    Topics: Arachidonic Acids; Blood-Brain Barrier; Brain; Camphanes; Cannabinoid Receptor Agonists; Cannabinoid Receptor Modulators; Capsaicin; Cell Adhesion Molecules; Cells, Cultured; Cerebrovascular Circulation; Dose-Response Relationship, Drug; Drug Interactions; Endocannabinoids; Endothelium, Vascular; Glycerides; Humans; Ion Channels; Microcirculation; Microfilament Proteins; Phosphoproteins; Phosphorylation; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Receptors, Cannabinoid; Receptors, Drug; Rimonabant; RNA, Messenger; TRPV Cation Channels

2004
Contribution of endocannabinoids in the endothelial protection afforded by ischemic preconditioning in the isolated rat heart.
    Life sciences, 2003, Mar-07, Volume: 72, Issue:16

    The aim of the present study was to assess the contribution of endogenous cannabinoids in the protective effect of ischemic preconditioning on the endothelial function in coronary arteries of the rat. Isolated rat hearts were exposed to a 30-min low flow ischemia (1 ml/min) followed by 20-min reperfusion, after which the response to the endothelium-dependent vasodilator, serotonine (5-HT), was compared with that of the endothelium-independent vasodilator, sodium nitroprusside (SNP). In untreated hearts, ischemia-reperfusion diminished selectively 5-HT-induced vasodilatation, compared with time-matched sham hearts, the vasodilatation to SNP being unaffected. A 5-min zero-flow preconditioning ischemia in untreated hearts preserved the vasodilatation produced by 5-HT. Blockade of either CB(1)-receptors with SR141716A or CB(2)-receptors with SR144528 abolished the protective effect of preconditioning on the 5-HT vasodilatation. Perfusion with either palmitoylethanolamide or 2-arachidonoylglycerol 15 min before and throughout the ischemia mimicked preconditioning inasmuch as it protected the endothelium in a similar fashion. This protection was blocked by SR144528 in both cases, whereas SR141716A only blocked the effect of PEA. The presence of CB(1) and CB(2)-receptors in isolated rat hearts was confirmed by Western blots. In conclusion, the data suggest that endogenous cannabinoids contribute to the endothelial protective effect of ischemic preconditioning in rat coronary arteries.

    Topics: Amides; Animals; Arachidonic Acids; Blotting, Western; Camphanes; Cannabinoid Receptor Modulators; Cannabinoids; Coronary Vessels; Endocannabinoids; Endothelium, Vascular; Ethanolamines; Fatty Acids, Unsaturated; Glycerides; Heart; Ischemic Preconditioning, Myocardial; Male; Myocardium; Nitroprusside; Palmitic Acids; Piperidines; Pyrazoles; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB2; Receptors, Cannabinoid; Receptors, Drug; Rimonabant; Serotonin; Vasodilation

2003
Endocannabinoids protect the rat isolated heart against ischaemia.
    British journal of pharmacology, 2003, Volume: 139, Issue:4

    1 The purpose of this study was to determine whether endocannabinoids can protect the heart against ischaemia and reperfusion. 2 Rat isolated hearts were exposed to low-flow ischaemia (0.5-0.6 ml min(-1)) and reperfusion. Functional recovery as well as CK and LDH overflow into the coronary effluent were monitored. Infarct size was determined at the end of the experiments. Phosphorylation levels of p38, ERK1/2, and JNK/SAPK kinases were measured by Western blots. 3 None of the untreated hearts recovered from ischaemia during the reperfusion period. Perfusion with either 300 nM palmitoylethanolamide (PEA) or 300 nM 2-arachidonoylglycerol (2-AG), but not anandamide (up to 1 micro M), 15 min before and throughout the ischaemic period, improved myocardial recovery and decreased the levels of coronary CK and LDH. PEA and 2-AG also reduced infarct size. 4 The CB(2)-receptor antagonist, SR144528, blocked completely the cardioprotective effect of both PEA and 2-AG, whereas the CB(1)-receptor antagonist, SR141716A, blocked partially the effect of 2-AG only. In contrast, both ACEA and JWH015, two selective agonists for CB(1)- and CB(2)- receptors, respectively, reduced infarct size at a concentration of 50 nM. 5 PEA enhanced the phosphorylation level of p38 MAP kinase during ischaemia. PEA perfusion doubled the baseline phosphorylation level of ERK1/2, and enhanced its increase upon reperfusion. The cardioprotective effect of PEA was completely blocked by the p38 MAP kinase inhibitor, SB203580, and significantly reduced by the ERK1/2 inhibitor, PD98059, and the PKC inhibitor, chelerythrine. 6 In conclusion, endocannabinoids exert a strong cardioprotective effect in a rat model of ischaemia-reperfusion that is mediated mainly through CB(2)-receptors, and involves p38, ERK1/2, as well as PKC activation.

    Topics: Amides; Animals; Arachidonic Acids; Biomarkers; Blotting, Western; Camphanes; Cannabinoid Receptor Modulators; Endocannabinoids; Ethanolamines; Glycerides; Heart; Imidazoles; L-Lactate Dehydrogenase; Mitogen-Activated Protein Kinase 3; Mitogen-Activated Protein Kinases; Myocardial Infarction; Myocardial Ischemia; Myocardial Reperfusion Injury; p38 Mitogen-Activated Protein Kinases; Palmitic Acids; Piperidines; Protein Kinase C; Pyrazoles; Pyridines; Rats; Rats, Sprague-Dawley; Rimonabant; Signal Transduction

2003
Down-regulation by cannabinoids of the immunological activation of human basophils and guinea pig mast cells.
    Inflammation research : official journal of the European Histamine Research Society ... [et al.], 2002, Volume: 51 Suppl 1

    Topics: Animals; Antigens, CD; Arachidonic Acids; Basophils; Camphanes; Cannabinoids; Cyclohexanols; Down-Regulation; Endocannabinoids; Glycerides; Guinea Pigs; Histamine Release; Humans; Immunoglobulin E; In Vitro Techniques; Macrophage Activation; Mast Cells; Platelet Membrane Glycoproteins; Pyrazoles; Receptors, Cannabinoid; Receptors, Drug; Tetraspanin 30

2002
Human platelets bind and degrade 2-arachidonoylglycerol, which activates these cells through a cannabinoid receptor.
    European journal of biochemistry, 2001, Volume: 268, Issue:3

    The endocannabinoid 2-arachidonoylglycerol (2-Delta(4)Ach-Gro) activates human platelets in platelet-rich plasma at physiological concentrations. The activation was inhibited by selective antagonists of CB(1) and CB(2) cannabinoid receptors, but not by acetylsalicylic acid. Human platelets can metabolize 2-Delta(4)Ach-Gro by internalization through a high affinity transporter (K(m) = 300 +/- 30 nM, V(max) = 10 +/- 1 pmol.min(-1).mg protein(-1)), followed by hydrolysis by a fatty acid amide hydrolase (K(m) = 8 +/- 1 microM, V(max) = 400 +/- 50 pmol.min(-1).mg protein(-1)). The anandamide transport inhibitor AM404, and anandamide itself, were ineffective on 2-Delta(4)Ach-Gro uptake by platelets, whereas anandamide competitively inhibited 2-Delta(4)Ach-Gro hydrolysis (inhibition constant = 10 +/- 1 microM). Platelet activation by 2-Delta(4)Ach-Gro was paralleled by an increase of intracellular calcium and inositol-1,4,5-trisphosphate, and by a decrease of cyclic AMP. Moreover, treatment of preloaded platelet-rich plasma with 2-Delta(4)Ach-Gro induced an approximately threefold increase in [(3)H]2-Delta(4)Ach-Gro release, according to a CB receptor-dependent mechanism. On the other hand, ADP and collagen counteracted the activation of platelets by 2-Delta(4)Ach-Gro, whereas 5-hydroxytryptamine (serotonin) enhanced and extended its effects. Remarkably, ADP and collagen also reduced [(3)H]2-Delta(4)Ach-Gro release from 2-Delta(4)Ach-Gro-activated platelets, whereas 5-hydroxytryptamine further increased it. These findings suggest a so far unnoticed interplay between the peripheral endocannabinoid system and physiological platelet agonists.

    Topics: Adenosine Diphosphate; Amidohydrolases; Arachidonic Acids; Aspirin; Biological Transport; Blood Platelets; Calcium Channel Blockers; Camphanes; Cannabinoid Receptor Modulators; Collagen; Cyclic AMP; Endocannabinoids; Glycerides; Humans; Hydrolysis; Inositol 1,4,5-Trisphosphate; Kinetics; Piperidines; Platelet Activation; Polyunsaturated Alkamides; Pyrazoles; Receptors, Cannabinoid; Receptors, Drug; Rimonabant; Serotonin; Time Factors

2001
Palmitoylethanolamide inhibits the expression of fatty acid amide hydrolase and enhances the anti-proliferative effect of anandamide in human breast cancer cells.
    The Biochemical journal, 2001, Aug-15, Volume: 358, Issue:Pt 1

    Palmitoylethanolamide (PEA) has been shown to act in synergy with anandamide (arachidonoylethanolamide; AEA), an endogenous agonist of cannabinoid receptor type 1 (CB(1)). This synergistic effect was reduced by the CB(2) cannabinoid receptor antagonist SR144528, although PEA does not activate either CB(1) or CB(2) receptors. Here we show that PEA potently enhances the anti-proliferative effects of AEA on human breast cancer cells (HBCCs), in part by inhibiting the expression of fatty acid amide hydrolase (FAAH), the major enzyme catalysing AEA degradation. PEA (1-10 microM) enhanced in a dose-related manner the inhibitory effect of AEA on both basal and nerve growth factor (NGF)-induced HBCC proliferation, without inducing any cytostatic effect by itself. PEA (5 microM) decreased the IC(50) values for AEA inhibitory effects by 3-6-fold. This effect was not blocked by the CB(2) receptor antagonist SR144528, and was not mimicked by a selective agonist of CB(2) receptors. PEA enhanced AEA-evoked inhibition of the expression of NGF Trk receptors, which underlies the anti-proliferative effect of the endocannabinoid on NGF-stimulated MCF-7 cells. The effect of PEA was due in part to inhibition of AEA degradation, since treatment of MCF-7 cells with 5 microM PEA caused a approximately 30-40% down-regulation of FAAH expression and activity. However, PEA also enhanced the cytostatic effect of the cannabinoid receptor agonist HU-210, although less potently than with AEA. PEA did not modify the affinity of ligands for CB(1) or CB(2) receptors, and neither did it alter the CB(1)/CB(2)-mediated inhibitory effect of AEA on adenylate cyclase type V, nor the expression of CB(1) and CB(2) receptors in MCF-7 cells. We suggest that long-term PEA treatment of cells may positively affect the pharmacological activity of AEA, in part by inhibiting FAAH expression.

    Topics: Amides; Amidohydrolases; Animals; Anti-Inflammatory Agents, Non-Steroidal; Antineoplastic Agents; Arachidonic Acids; Blotting, Western; Breast Neoplasms; Camphanes; Cannabinoid Receptor Modulators; Cannabinoids; Capsaicin; Cell Division; Colforsin; COS Cells; Cyclic AMP; Dose-Response Relationship, Drug; Endocannabinoids; Ethanolamines; Glycerides; Humans; Hydrolysis; Inhibitory Concentration 50; Palmitic Acids; Polyunsaturated Alkamides; Protein Binding; Pyrazoles; Receptors, Cannabinoid; Receptors, Drug; Reverse Transcriptase Polymerase Chain Reaction; Transfection; Tumor Cells, Cultured

2001
Evidence that 2-arachidonoylglycerol but not N-palmitoylethanolamine or anandamide is the physiological ligand for the cannabinoid CB2 receptor. Comparison of the agonistic activities of various cannabinoid receptor ligands in HL-60 cells.
    The Journal of biological chemistry, 2000, Jan-07, Volume: 275, Issue:1

    We examined the effect of 2-arachidonoylglycerol, an endogenous cannabinoid receptor ligand, on the intracellular free Ca(2+) concentrations in HL-60 cells that express the cannabinoid CB2 receptor. We found that 2-arachidonoylglycerol induces a rapid transient increase in intracellular free Ca(2+) concentrations in HL-60 cells. The response was affected by neither cyclooxygenase inhibitors nor lipoxygenase inhibitors, suggesting that arachidonic acid metabolites are not involved. Consistent with this notion, free arachidonic acid was devoid of any agonistic activity. Importantly, the Ca(2+) transient induced by 2-arachidonoylglycerol was blocked by pretreatment of the cells with SR144528, a CB2 receptor-specific antagonist, but not with SR141716A, a CB1 receptor-specific antagonist, indicating the involvement of the CB2 receptor but not the CB1 receptor in this cellular response. G(i) or G(o) is also assumed to be involved, because pertussis toxin treatment of the cells abolished the response. We further examined the structure-activity relationship. We found that 2-arachidonoylglycerol is the most potent compound among a number of naturally occurring cannabimimetic molecules. Interestingly, anandamide and N-palmitoylethanolamine, other putative endogenous ligands, were found to be a weak partial agonist and an inactive ligand, respectively. These results strongly suggest that the CB2 receptor is originally a 2-arachidonoylglycerol receptor, and 2-arachidonoylglycerol is the intrinsic natural ligand for the CB2 receptor that is abundant in the immune system.

    Topics: Amides; Arachidonic Acids; Calcium Signaling; Camphanes; Cannabinoids; Cyclohexanols; Cyclooxygenase Inhibitors; Drug Interactions; Endocannabinoids; Ethanolamines; Glycerides; HL-60 Cells; Humans; Ligands; Lipoxygenase Inhibitors; Molecular Mimicry; Palmitic Acids; Pertussis Toxin; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Receptors, Cannabinoid; Receptors, Drug; Rimonabant; RNA, Messenger; Structure-Activity Relationship; Virulence Factors, Bordetella

2000
Cardiovascular effects of 2-arachidonoyl glycerol in anesthetized mice.
    Hypertension (Dallas, Tex. : 1979), 2000, Volume: 35, Issue:2

    Cannabinoids, including the endogenous ligand anandamide, elicit pronounced hypotension and bradycardia through the activation of CB1 cannabinoid receptors. A second endogenous cannabinoid, 2-arachidonoyl glycerol (2-AG), has been proposed to be the natural ligand of CB1 receptors. In the present study, we examined the effects of 2-AG on mean arterial pressure and heart rate in anesthetized mice and assessed the role of CB1 receptors through the use of selective cannabinoid receptor antagonists and CB1 receptor knockout (CB1(-/-)) mice. In control ICR mice, intravenous injections of 2-AG or its isomer 1-AG elicit dose-dependent hypotension and moderate tachycardia that are unaffected by the CB1 receptor antagonist SR141716A. The same dose of SR141716A (6 nmol/g IV) completely blocks the hypotensive effect and attenuates the bradycardic effect of anandamide. 2-AG elicits a similar hypotensive effect, resistant to blockade by either SR141716A or the CB2 antagonist SR144528, in both CB1(-/-) mice and their homozygous (CB1(+/+)) control littermates. In ICR mice, arachidonic acid (AA, 15 nmol/g IV) elicits hypotension and tachycardia, and indomethacin (14 nmol/g IV) inhibits the hypotensive effect of both AA and 2-AG. Synthetic 2-AG incubated with mouse blood is rapidly (<2 minutes) and completely degraded with the parallel appearance of AA, whereas anandamide is stable under the same conditions. A metabolically stable ether analogue of 2-AG causes prolonged hypotension and bradycardia in ICR mice, and both effects are completely blocked by SR141716A, whereas the same dose of 2-AG-ether does not influence blood pressure and heart rate in CB1(-/-) mice. These findings are interpreted to indicate that exogenous 2-AG is rapidly degraded in mouse blood, probably by a lipase, which masks its ability to interact with CB1 receptors. Although the observed cardiovascular effects of 2-AG probably are produced by an arachidonate metabolite through a noncannabinoid mechanism, the CB1 receptor-mediated cardiovascular effects of a stable analogue of 2-AG leaves open the possibility that endogenous 2-AG may elicit cardiovascular effects through CB1 receptors.

    Topics: Anesthesia; Animals; Arachidonic Acids; Blood Pressure; Camphanes; Cardiovascular Agents; Cardiovascular Diseases; Dose-Response Relationship, Drug; Endocannabinoids; Female; Glycerides; Heart Rate; Hypotension; Indomethacin; Ligands; Male; Mice; Mice, Inbred ICR; Mice, Knockout; Piperidines; Pyrazoles; Receptors, Cannabinoid; Receptors, Drug; Rimonabant; Tachycardia

2000