sr-144528 has been researched along with arachidonyl-2-chloroethylamide* in 9 studies
9 other study(ies) available for sr-144528 and arachidonyl-2-chloroethylamide
Article | Year |
---|---|
Inhibition of COX-2-mediated eicosanoid production plays a major role in the anti-inflammatory effects of the endocannabinoid N-docosahexaenoylethanolamine (DHEA) in macrophages.
N-docosahexaenoylethanolamine (DHEA) is the ethanolamine conjugate of the long-chain polyunsaturated n-3 fatty acid docosahexaenoic (DHA; 22: 6n-3). Its concentration in animal tissues and human plasma increases when diets rich in fish or krill oil are consumed. DHEA displays anti-inflammatory properties in vitro and was found to be released during an inflammatory response in mice. Here, we further examine possible targets involved in the immune-modulating effects of DHEA.. Antagonists for cannabinoid (CB)1 and CB2 receptors and PPARγ were used to explore effects of DHEA on NO release by LPS-stimulated RAW264.7 cells. The possible involvement of CB2 receptors was studied by comparing effects in LPS-stimulated peritoneal macrophages obtained from CB2 (-/-) and CB2 (+/+) mice. Effects on NF-κB activation were determined using a reporter cell line. To study DHEA effects on COX-2 and lipoxygenase activity, 21 different eicosanoids produced by LPS-stimulated RAW264.7 cells were quantified by LC-MS/MS. Finally, effects on mRNA expression profiles were analysed using gene arrays followed by Ingenuity(®) Pathways Analysis.. CB1 and CB2 receptors or PPARs were not involved in the effects of DHEA on NO release. NF-κB and IFN-β, key elements of the myeloid differentiation primary response protein D88 (MyD88)-dependent and MyD88-independent pathways were not decreased. By contrast, DHEA significantly reduced levels of several COX-2-derived eicosanoids. Gene expression analysis provided support for an effect on COX-2-mediated pathways.. Our findings suggest that the anti-inflammatory effects of DHEA in macrophages predominantly take place via inhibition of eicosanoids produced through COX-2.. This article is part of a themed section on Cannabinoids 2013 published in volume 171 issue 6. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.2014.171.issue-6/issuetoc. Topics: Anilides; Animals; Arachidonic Acids; Camphanes; Cell Line; Cells, Cultured; Cyclooxygenase 2; Cyclooxygenase 2 Inhibitors; Dehydroepiandrosterone; Dinoprostone; Endocannabinoids; Indenes; Interferon-beta; Lipopolysaccharides; Macrophages; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Myeloid Differentiation Factor 88; NF-kappa B; Nitric Oxide; Piperidines; PPAR gamma; Pyrazoles; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Rimonabant; Rosiglitazone; Thiazolidinediones; Toll-Like Receptor 3; Toll-Like Receptor 4 | 2015 |
Ultralow doses of cannabinoid drugs protect the mouse brain from inflammation-induced cognitive damage.
In our previous studies, we found that a single ultralow dose of tetrahydrocannabinol (THC; 0.002 mg/kg, three to four orders of magnitude lower than the conventional doses) protects the brain from different insults that cause cognitive deficits. Because various insults may trigger a neuroinflammatory response that leads to secondary damage to the brain, the current study tested whether this extremely low dose of THC could protect the brain from inflammation-induced cognitive deficits. Mice received a single injection of THC (0.002 mg/kg) 48 hr before or 1-7 days after treatment with lipopolysccharide (LPS; 10 mg/kg) and were examined with the object recognition test 3 weeks later. LPS caused long-lasting cognitive deficits, whereas the application of THC before or after LPS protected the mice from this LPS-induced damage. The protective effect of THC was blocked by the cannabinoid (CB) 1 receptor antagonist SR14176A but not by the CB2 receptor antagonist SR141528 and was mimicked by the CB1 agonist ACEA but not by the CB2 agonist HU308. The protective effect of THC was also blocked by pretreatment with GW9662, indicating the involvement of peroxisome proliferator-activated receptor-γ. Biochemical examination of the brain revealed a long-term (at least 7 weeks) elevation of the prostaglandin-producing enzyme cyclooxygenase-2 in the hippocampus and in the frontal cortex following the injection of LPS. Pretreatment with the extremely low dose of THC tended to attenuate this elevation. Our results suggest that an ultralow dose of THC that lacks any psychotrophic activity protects the brain from neuroinflammation-induced cognitive damage and might be used as an effective drug for the treatment of neuroinflammatory conditions, including neurodegenerative diseases. Topics: Anilides; Animals; Arachidonic Acids; Brain; Camphanes; Cannabinoid Receptor Agonists; Cannabinoid Receptor Antagonists; Cognition Disorders; Cyclooxygenase 2; Disease Models, Animal; Dose-Response Relationship, Drug; Dronabinol; Encephalitis; Lipopolysaccharides; Male; Mice; Mice, Inbred ICR; PPAR gamma; Pyrazoles; Recognition, Psychology | 2014 |
Cannabinoid CB2 receptor agonists protect the striatum against malonate toxicity: relevance for Huntington's disease.
Cannabinoid agonists might serve as neuroprotective agents in neurodegenerative disorders. Here, we examined this hypothesis in a rat model of Huntington's disease (HD) generated by intrastriatal injection of the mitochondrial complex II inhibitor malonate. Our results showed that only compounds able to activate CB2 receptors were capable of protecting striatal projection neurons from malonate-induced death. That CB2 receptor agonists are neuroprotective was confirmed by using the selective CB2 receptor antagonist, SR144528, and by the observation that mice deficient in CB2 receptor were more sensitive to malonate than wild-type animals. CB2 receptors are scarce in the striatum in healthy conditions, but they are markedly upregulated after the lesion with malonate. Studies of double immunostaining revealed a significant presence of CB2 receptors in cells labeled with the marker of reactive microglia OX-42, and also in cells labeled with GFAP (a marker of astrocytes). We further showed that the activation of CB2 receptors significantly reduced the levels of tumor necrosis factor-alpha (TNF-alpha) that had been increased by the lesion with malonate. In summary, our results demonstrate that stimulation of CB2 receptors protect the striatum against malonate toxicity, likely through a mechanism involving glial cells, in particular reactive microglial cells in which CB2 receptors would be upregulated in response to the lesion. Activation of these receptors would reduce the generation of proinflammatory molecules like TNF-alpha. Altogether, our results support the hypothesis that CB2 receptors could constitute a therapeutic target to slowdown neurodegeneration in HD. Topics: Animals; Arachidonic Acids; Camphanes; Cannabinoids; Cell Death; Central Nervous System Agents; Corpus Striatum; Disease Models, Animal; Huntington Disease; Male; Malonates; Mice; Mice, Knockout; Neuroglia; Neurons; Neuroprotective Agents; Pyrazoles; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB2; Tumor Necrosis Factor-alpha | 2009 |
The cannabinoid delta-9-tetrahydrocannabinol mediates inhibition of macrophage chemotaxis to RANTES/CCL5: linkage to the CB2 receptor.
The chemotactic response of murine peritoneal macrophages to RANTES/CCL5 was inhibited significantly following pretreatment with delta-9-tetrahydrocannabinol (THC), the major psychoactive component in marijuana. Significant inhibition of this chemokine directed migratory response was obtained also when the full cannabinoid agonist CP55940 was used. The CB2 receptor-selective ligand O-2137 exerted a robust inhibition of chemotaxis while the CB1 receptor-selective ligand ACEA had a minimal effect. The THC-mediated inhibition was reversed by the CB2 receptor-specific antagonist SR144528 but not by the CB1 receptor-specific antagonist SR141716A. In addition, THC treatment had a minimal effect on the chemotactic response of peritoneal macrophages from CB2 knockout mice. Collectively, these results suggest that cannabinoids act through the CB2 receptor to transdeactivate migratory responsiveness to RANTES/CCL5. Furthermore, the results suggest that the CB2 receptor may be a constituent element of a network of G protein-coupled receptor signal transductional systems, inclusive of chemokine receptors, that act coordinately to modulate macrophage migration. Topics: Animals; Arachidonic Acids; Camphanes; Chemokine CCL5; Chemotaxis; Cyclohexanols; Dronabinol; Female; Macrophages, Peritoneal; Mice; Mice, Inbred C57BL; Mice, Knockout; Piperidines; Pyrazoles; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Receptors, CCR1; Receptors, CCR5; Receptors, G-Protein-Coupled; Rimonabant; RNA, Messenger; Signal Transduction | 2008 |
CB2 cannabinoid receptors promote mouse neural stem cell proliferation.
Neurospheres are clonal cellular aggregates of neural stem/precursor cells that grow in culture as free-floating clusters. Activation of CB1 cannabinoid receptors, which are expressed by these cells, promotes proliferation. In the present study we investigated the expression of CB2 cannabinoid receptors and the effect of exogenous cannabinoids on neural stem/precursor cell proliferation. Neurospheres containing nestin-positive and sn-1 diacylglycerol lipase alpha-positive cells expressed both CB1 and CB2 receptors, which were maintained through several passages. Application of the non-selective cannabinoid agonist (HU-210, 0.5 microM) stimulated bromodeoxyuridine incorporation and neurosphere formation. This action involved both CB1 and CB2 receptors as neurosphere formation was stimulated by either selective CB1 [arachidonyl-2'chloroethylamide/(all Z)-N-(2-cycloethyl)-5,8,11,14-eicosatetraenamide (ACEA), 200 nM and 1 microM] or CB2 (JWH-056, 0.5 microM) agonists. In addition, CB1 or CB2 antagonists (1 microM SR-141716A and SR-144528, respectively) blocked basal proliferation, suggesting that endogenous cannabinoids are implicated in neurosphere proliferation. In addition, cannabinoid agonist-stimulated proliferation was reduced by the Akt translocation inhibitor BML-257 (12.5 microM), suggesting a role for phosphoinositide-3 kinase signalling. Together, our results suggest that cannabinoids stimulate proliferation of neural stem/precursor cells acting on both CB1 and CB2 cannabinoid receptors through a phosphoinositide-3 kinase/Akt pathway. Topics: Animals; Arachidonic Acids; Camphanes; Cell Division; Cells, Cultured; Cerebral Cortex; Dronabinol; Excitatory Amino Acid Antagonists; Lipoprotein Lipase; Mice; Neurons; Phosphatidylinositol 3-Kinases; Piperidines; Proto-Oncogene Proteins c-akt; Pyrazoles; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Rimonabant; Signal Transduction; Spheroids, Cellular; Stem Cells | 2007 |
Inhibitory effects of CB1 and CB2 receptor agonists on responses of DRG neurons and dorsal horn neurons in neuropathic rats.
Cannabinoid 2 (CB2) receptor mediated antinociception and increased levels of spinal CB2 receptor mRNA are reported in neuropathic Sprague-Dawley rats. The aim of this study was to provide functional evidence for a role of peripheral, vs. spinal, CB2 and cannabinoid 1 (CB1) receptors in neuropathic rats. Effects of the CB2 receptor agonist, JWH-133, and the CB1 receptor agonist, arachidonyl-2-chloroethylamide (ACEA), on primary afferent fibres were determined by calcium imaging studies of adult dorsal root ganglion (DRG) neurons taken from neuropathic and sham-operated rats. Capsaicin (100 nm) increased [Ca2+]i in DRG neurons from sham and neuropathic rats. JWH-133 (3 microm) or ACEA (1 microm) significantly (P<0.001) attenuated capsaicin-evoked calcium responses in DRG neurons in neuropathic and sham-operated rats. The CB2 receptor antagonist, SR144528, (1 microm) significantly inhibited the effects of JWH-133. Effects of ACEA were significantly inhibited by the CB1 receptor antagonist SR141716A (1 microm). In vivo experiments evaluated the effects of spinal administration of JWH-133 (8-486 ng/50 microL) and ACEA (0.005-500 ng/50 microL) on mechanically evoked responses of neuropathic and sham-operated rats. Spinal JWH-133 attenuated mechanically evoked responses of spinal neurons in neuropathic, but not sham-operated rats. These inhibitory effects were blocked by SR144528 (0.001 microg/50 microL). Spinal ACEA inhibited mechanically evoked responses of neuropathic and sham-operated rats, these effects were blocked by SR141716A (0.01 microg/50 microL). Our data provide evidence for a functional role of CB2, as well as CB1 receptors on DRG neurons in sham and neuropathic rats. At the level of the spinal cord, CB2 receptors have inhibitory effects in neuropathic, but not sham-operated rats suggesting that spinal CB2 may be an important analgesic target. Topics: Action Potentials; Animals; Arachidonic Acids; Behavior, Animal; Calcium; Camphanes; Cannabinoids; Capsaicin; Cells, Cultured; Diagnostic Imaging; Dose-Response Relationship, Drug; Drug Interactions; Evoked Potentials; Ganglia, Spinal; Hyperalgesia; Ligation; Male; Neural Inhibition; Neurons; Pain Measurement; Piperidines; Posterior Horn Cells; Pyrazoles; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Rimonabant; Spinal Cord Diseases; Touch | 2005 |
Inhibition of interleukin-8 release in the human colonic epithelial cell line HT-29 by cannabinoids.
We have investigated the effects of cannabinoid agonists and antagonists on tumour necrosis factor-alpha (TNF-alpha)-induced secretion of interleukin-8 from the colonic epithelial cell line, HT-29. The cannabinoid receptor agonists [(-)-3-[2-hydroxy-4-(1,1-dimethyl-heptyl)-phenyl]4-[3-hydroxypropyl]cyclo-hexan-1-ol] (CP55,940); Delta-9-tetrahydrocannabinol; [R(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl) methyl] pyrrolo[1,2,3-de]1,4-benzoxazin-6-yl](1-naphthyl) methanone mesylate] (WIN55,212-2) and 1-propyl-2-methyl-3-naphthoyl-indole (JWH 015) inhibited TNF-alpha induced release of interleukin-8 in a concentration-dependent manner. The less active enantiomer of WIN55212-2, [S(-)-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo[1,2,3-de]1,4-benzoxazin-6-yl](1-naphthyl) methanone mesylate (WIN55212-3), and the cannabinoid CB(1) receptor agonist arachidonoyl-2-chloroethylamide (ACEA) had no significant effect on TNF-alpha-induced release of interleukin-8. The cannabinoid CB(1) receptor antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1,4-pyrazole-3-carboxamide hydrochloride (SR141716A; 10(-6) M) antagonised the inhibitory effect of CP55,940 (pA(2)=8.3+/-0.2, n=6) but did not antagonise the inhibitory effects of WIN55212-2 and JWH 015. The cannabinoid CB(2) receptor antagonist N-(1,S)-endo1,3,3-trimethylbicyclo(2,2,1)heptan-2-yl)-5(4-chloro-3-methyl-phenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide (SR144528; 10(-6) M) antagonised the inhibitory effects of CP55,940 (pA(2)=8.2+/-0.8, n=6), WIN55212-2 (pA(2)=7.1+/-0.3, n=6) and JWH 015 (pA(2)=7.6+/-0.3, n=6), respectively. Western immunoblotting of HT-29 cell lysates revealed a protein with a size that is consistent with the presence of cannabinoid CB(2) receptors. We conclude that in HT-29 cells, TNF-alpha-induced interleukin-8 release is inhibited by cannabinoids through activation of cannabinoid CB(2) receptors. Topics: Arachidonic Acids; Benzoxazines; Camphanes; Cannabinoids; Cell Survival; Cyclohexanols; Dose-Response Relationship, Drug; HT29 Cells; Humans; Immunoblotting; Indoles; Interleukin-8; Kinetics; Morpholines; Naphthalenes; Piperidines; Pyrazoles; Receptors, Cannabinoid; Receptors, Drug; Rimonabant; Tumor Necrosis Factor-alpha | 2003 |
Pharmacological characterisation of cannabinoid receptors inhibiting interleukin 2 release from human peripheral blood mononuclear cells.
The effects of a range of cannabinoid receptor agonists and antagonists on phytohaemagglutinin-induced secretion of interleukin-2 from human peripheral blood mononuclear cells were investigated. The nonselective cannabinoid receptor agonist WIN55212-2 ((R)-(+)-[2,3-dihydro-5-methyl-3-[4-morpholinylmethyl]pyrrolo[1,2,3-de]1,4-benzoxazin-6-yl](1-naphthyl) methanone mesylate) and the selective cannabinoid CB(2) receptor agonist JWH 015 ((2-methyl-1-propyl-1H-indol-3-yl)-1-napthalenylmethanone) inhibited phytohaemagglutinin (10 microg/ml)-induced release of interleukin-2 in a concentration-dependent manner (IC(1/2max), WIN55212-2=8.8 x 10(-7) M, 95% confidence limits (C.L.)=2.2 x 10(-7)-3.5 x 10(-6) M; JWH 015=1.8 x 10(-6) M, 95% C.L.=1.2 x 10(-6)-2.9 x 10(-6) M, n=5). The nonselective cannabinoid receptor agonists CP55,940 ((-)-3-[2-hydroxy-4-(1,1-dimethyl-hepthyl)-phenyl]4-[3-hydroxypropyl]cyclo-hexan-1-ol), Delta(9)-tetrahydrocannabinol and the selective cannabinoid CB(1) receptor agonist ACEA (arachidonoyl-2-chloroethylamide) had no significant (P>0.05) inhibitory effect on phytohaemagglutinin-induced release of interleukin-2. Dexamethasone significantly (P<0.05) inhibited phytohaemagglutinin-induced release of interleukin-2 in a concentration-dependent manner (IC(1/2max)=1.3 x 10(-8) M, 95% C.L.=1.4 x 10(-9)-3.2 x 10(-8) M). The cannabinoid CB(1) receptor antagonist SR141716A (N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide hydrochloride) (10(-6) M) did not antagonise the inhibitory effect of WIN55212-2 whereas the cannabinoid CB(2) receptor antagonist SR144528 (N-(1,S)-endo-1,3,3-trimethyl bicyclo(2,2,1)heptan-2-yl)-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide) antagonised the inhibitory effect of WIN55212-2 (pA(2)=6.3+/-0.1, n=5). In addition, CP55,940 (10(-6) M) and Delta(9)-tetrahydrocannabinol (10(-6) M) also antagonised the inhibitory effects of WIN55212-2 (pA(2)=6.1+/-0.1, n=5 and pA(2)=6.9+/-0.2, n=5). In summary, WIN55,212-2 and JWH 015 inhibited interleukin-2 release from human peripheral blood mononuclear cells via the cannabinoid CB(2) receptor. In contrast, CP55,940 and Delta(9)-tetrahydrocannabinol behaved as partial agonists/antagonists in these cells. Topics: Arachidonic Acids; Benzoxazines; Camphanes; Cell Survival; Cyclohexanols; Dose-Response Relationship, Drug; Dronabinol; Humans; Indoles; Interleukin-2; Leukocytes, Mononuclear; Morpholines; Naphthalenes; Phytohemagglutinins; Piperidines; Pyrazoles; Receptors, Cannabinoid; Receptors, Drug; Rimonabant | 2003 |
Endocannabinoids protect the rat isolated heart against ischaemia.
1 The purpose of this study was to determine whether endocannabinoids can protect the heart against ischaemia and reperfusion. 2 Rat isolated hearts were exposed to low-flow ischaemia (0.5-0.6 ml min(-1)) and reperfusion. Functional recovery as well as CK and LDH overflow into the coronary effluent were monitored. Infarct size was determined at the end of the experiments. Phosphorylation levels of p38, ERK1/2, and JNK/SAPK kinases were measured by Western blots. 3 None of the untreated hearts recovered from ischaemia during the reperfusion period. Perfusion with either 300 nM palmitoylethanolamide (PEA) or 300 nM 2-arachidonoylglycerol (2-AG), but not anandamide (up to 1 micro M), 15 min before and throughout the ischaemic period, improved myocardial recovery and decreased the levels of coronary CK and LDH. PEA and 2-AG also reduced infarct size. 4 The CB(2)-receptor antagonist, SR144528, blocked completely the cardioprotective effect of both PEA and 2-AG, whereas the CB(1)-receptor antagonist, SR141716A, blocked partially the effect of 2-AG only. In contrast, both ACEA and JWH015, two selective agonists for CB(1)- and CB(2)- receptors, respectively, reduced infarct size at a concentration of 50 nM. 5 PEA enhanced the phosphorylation level of p38 MAP kinase during ischaemia. PEA perfusion doubled the baseline phosphorylation level of ERK1/2, and enhanced its increase upon reperfusion. The cardioprotective effect of PEA was completely blocked by the p38 MAP kinase inhibitor, SB203580, and significantly reduced by the ERK1/2 inhibitor, PD98059, and the PKC inhibitor, chelerythrine. 6 In conclusion, endocannabinoids exert a strong cardioprotective effect in a rat model of ischaemia-reperfusion that is mediated mainly through CB(2)-receptors, and involves p38, ERK1/2, as well as PKC activation. Topics: Amides; Animals; Arachidonic Acids; Biomarkers; Blotting, Western; Camphanes; Cannabinoid Receptor Modulators; Endocannabinoids; Ethanolamines; Glycerides; Heart; Imidazoles; L-Lactate Dehydrogenase; Mitogen-Activated Protein Kinase 3; Mitogen-Activated Protein Kinases; Myocardial Infarction; Myocardial Ischemia; Myocardial Reperfusion Injury; p38 Mitogen-Activated Protein Kinases; Palmitic Acids; Piperidines; Protein Kinase C; Pyrazoles; Pyridines; Rats; Rats, Sprague-Dawley; Rimonabant; Signal Transduction | 2003 |