sr-142801 has been researched along with chelerythrine* in 1 studies
1 other study(ies) available for sr-142801 and chelerythrine
Article | Year |
---|---|
Tachykinins increase [3H]acetylcholine release in mouse striatum through multiple receptor subtypes.
Tachykinins have been suggested to play a significant role in the mammalian striatum, at least in part by the control of acetylcholine release from cholinergic interneurons. In the present study, we have examined the ability of known tachykinin agonists and antagonists to modulate the activity of these interneurons in mouse striatal slices. Using whole-cell patch-clamp recordings, the selective neurokinin-1, neurokinin-2 and neurokinin-3 receptor agonists [sar9,Met(O2)11]substance P, [beta-ala8]neurokinin A(4-10) and senktide each produced a dose-dependent depolarization of visually identified cholinergic interneurons that was retained under conditions designed to interrupt synaptic transmission. The nature of these neurons and the expression of multiple tachykinin receptors was confirmed using single-cell reverse transcriptase-polymerase chain reaction analysis. Using in vitro superfusion techniques, the selective neurokinin-1, neurokinin-2 and neurokinin-3 receptor agonists [sar9,Met(O2)11]substance P, [beta-ala8]neurokinin A(4-10) and senktide, respectively, each produced a dose-dependent increase in acetylcholine release, the selectivity of which was confirmed using the neurokinin-1, neurokinin-2 and neurokinin-3 receptor antagonists SR140333, GR94800 and SR142801 (100 nM). U73122 (10 microM), a phospholipase C inhibitor, blocked [sar9,Met(O2)11]substance P- and senktide-induced acetylcholine release, but had no effect on [beta-ala8]neurokinin A(4-10)-induced release. The protein kinase C inhibitors chelerythrine and Ro-31-8220 (both 1 microM) significantly inhibited responses induced by all three agonists. These findings indicate that tachykinins modulate the activity of mouse striatal cholinergic interneurons. Furthermore, neurokinin-2 receptors are shown to perform a role in mouse that has not been identified previously in other species. Topics: 2-Amino-5-phosphonovalerate; Acetylcholine; Alkaloids; Animals; Benzophenanthridines; Choline O-Acetyltransferase; Corpus Striatum; Electrophysiology; Enzyme Inhibitors; Estrenes; Excitatory Amino Acid Antagonists; In Situ Hybridization; Indoles; Interneurons; Membrane Potentials; Mice; Mice, Inbred C57BL; Neurokinin A; Oligopeptides; omega-N-Methylarginine; Peptide Fragments; Phenanthridines; Phosphodiesterase Inhibitors; Piperidines; Pyrrolidinones; Quinoxalines; Quinuclidines; Receptors, Neurokinin-1; Receptors, Neurokinin-2; Receptors, Neurokinin-3; Receptors, Tachykinin; RNA, Messenger; Signal Transduction; Substance P; Tachykinins; Tetrodotoxin; Tritium | 2000 |