Page last updated: 2024-09-02

sr 140333 and 2-amino-5-phosphonovalerate

sr 140333 has been researched along with 2-amino-5-phosphonovalerate in 5 studies

Compound Research Comparison

Studies
(sr 140333)
Trials
(sr 140333)
Recent Studies (post-2010)
(sr 140333)
Studies
(2-amino-5-phosphonovalerate)
Trials
(2-amino-5-phosphonovalerate)
Recent Studies (post-2010) (2-amino-5-phosphonovalerate)
2360124,3931539

Protein Interaction Comparison

ProteinTaxonomysr 140333 (IC50)2-amino-5-phosphonovalerate (IC50)
Glutamate receptor ionotropic, NMDA 1 Rattus norvegicus (Norway rat)0.29
Glutamate receptor ionotropic, NMDA 2A Rattus norvegicus (Norway rat)0.29
Glutamate receptor ionotropic, NMDA 2BRattus norvegicus (Norway rat)0.29
Glutamate receptor ionotropic, NMDA 2CRattus norvegicus (Norway rat)0.29
Glutamate receptor ionotropic, NMDA 2DRattus norvegicus (Norway rat)0.29
Glutamate receptor ionotropic, NMDA 3BRattus norvegicus (Norway rat)0.29
Glutamate receptor ionotropic, NMDA 3ARattus norvegicus (Norway rat)0.29

Research

Studies (5)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's2 (40.00)18.2507
2000's3 (60.00)29.6817
2010's0 (0.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Baranauskas, G; Nistri, A1
Bell, MI; Lee, K; Richardson, PJ1
Lee, K; Pinnock, RD; Preston, Z; Richardson, PJ; Widdowson, L1
Kouznetsova, M; Nistri, A1
Randich, A; Turnbach, ME1

Other Studies

5 other study(ies) available for sr 140333 and 2-amino-5-phosphonovalerate

ArticleYear
NMDA receptor-independent mechanisms responsible for the rate of rise of cumulative depolarization evoked by trains of dorsal root stimuli on rat spinal motoneurones.
    Brain research, 1996, Nov-04, Volume: 738, Issue:2

    Topics: 2-Amino-5-phosphonovalerate; Animals; Electric Stimulation; Evoked Potentials; Excitatory Amino Acid Antagonists; Membrane Potentials; Motor Neurons; Neurokinin-1 Receptor Antagonists; Piperazines; Piperidines; Quinuclidines; Rats; Receptors, N-Methyl-D-Aspartate; Spinal Nerve Roots

1996
Characterization of the mechanism of action of tachykinins in rat striatal cholinergic interneurons.
    Neuroscience, 1998, Volume: 87, Issue:3

    Topics: 2-Amino-5-phosphonovalerate; Acetylcholine; Animals; Chelating Agents; Corpus Striatum; Diazonium Compounds; Electric Stimulation; Estrenes; Excitatory Amino Acid Antagonists; Guanosine 5'-O-(3-Thiotriphosphate); Interneurons; Male; Membrane Potentials; Patch-Clamp Techniques; Phenoxyacetates; Phosphodiesterase Inhibitors; Photochemistry; Piperidines; Pyrrolidinones; Quinoxalines; Quinuclidines; Rats; Rats, Sprague-Dawley; Receptors, Neurokinin-1; Substance P; Synaptic Transmission; Tachykinins; Tetrodotoxin

1998
Tachykinins increase [3H]acetylcholine release in mouse striatum through multiple receptor subtypes.
    Neuroscience, 2000, Volume: 95, Issue:2

    Topics: 2-Amino-5-phosphonovalerate; Acetylcholine; Alkaloids; Animals; Benzophenanthridines; Choline O-Acetyltransferase; Corpus Striatum; Electrophysiology; Enzyme Inhibitors; Estrenes; Excitatory Amino Acid Antagonists; In Situ Hybridization; Indoles; Interneurons; Membrane Potentials; Mice; Mice, Inbred C57BL; Neurokinin A; Oligopeptides; omega-N-Methylarginine; Peptide Fragments; Phenanthridines; Phosphodiesterase Inhibitors; Piperidines; Pyrrolidinones; Quinoxalines; Quinuclidines; Receptors, Neurokinin-1; Receptors, Neurokinin-2; Receptors, Neurokinin-3; Receptors, Tachykinin; RNA, Messenger; Signal Transduction; Substance P; Tachykinins; Tetrodotoxin; Tritium

2000
Facilitation of cholinergic transmission by substance P methyl ester in the mouse hippocampal slice preparation.
    The European journal of neuroscience, 2000, Volume: 12, Issue:2

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Acetylcholine; Action Potentials; Animals; Atropine; Bicuculline; Carbachol; Cholinergic Agonists; Drug Synergism; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Female; GABA Antagonists; Hippocampus; Male; Membrane Potentials; Mice; Patch-Clamp Techniques; Piperidines; Pyramidal Cells; Quinuclidines; Receptors, N-Methyl-D-Aspartate; Receptors, Neurokinin-1; Substance P; Tetrodotoxin; Valine

2000
The role of spinal neurokinin-1 and glutamate receptors in hyperalgesia and allodynia induced by prostaglandin E(2) or zymosan in the rat.
    Pain, 2002, Volume: 97, Issue:1-2

    Topics: 2-Amino-5-phosphonovalerate; Alanine; Animals; Dinoprostone; Excitatory Amino Acid Antagonists; Hyperalgesia; Male; Neurokinin-1 Receptor Antagonists; Piperidines; Quinoxalines; Quinuclidines; Rats; Rats, Sprague-Dawley; Receptors, AMPA; Receptors, Glutamate; Receptors, Kainic Acid; Receptors, N-Methyl-D-Aspartate; Receptors, Neurokinin-1; Spinal Cord; Zymosan

2002