squalestatin-1 has been researched along with betadex* in 2 studies
2 other study(ies) available for squalestatin-1 and betadex
Article | Year |
---|---|
Alterations in cell cholesterol content modulate Ca(2+)-induced tight junction assembly by MDCK cells.
Transepithelial electrical resistance (TER), a measure of tight junction (TJ) barrier function, develops more rapidly and reaches higher values after preincubation of MDCK cells for 24 h with 2 microM Lovastatin (lova), an inhibitor of 3-hydroxy-3-methylglutaryl-CoA reductase. While this effect was attributed to a 30% fall in cholesterol (CH), possible effects of lova on the supply of prenyl group precursors could not be excluded. In the current study, strategies were devised to examine effects on TER of agents that simultaneously lower CH and increase the flux of intermediates through the CH biosynthetic pathway. Zaragozic acid, 20 microM, an inhibitor of squalene synthase known to increase the synthesis of isoprenoids and levels of prenylated proteins, lowered cell CH by 30% after 24 h, while accelerating development of TER in the same manner as lova. TER was also enhanced, despite a 23% increase in the rate of [3H]acetate incorporation into CH, when total CH was reduced by 45% during a 2-h incubation with 2 mM methyl beta-cyclodextrin (MBCD), an agent that stimulates CH efflux from cells. The fact that the rate of TER development was diminished when cell CH content was elevated by incubation with a complex of CH and MBCD is further evidence that this sterol modulates development of the epithelial barrier. Cell associated CH derived from the complex was similar to endogenous CH with respect to its accessibility to cholesterol oxidase. Lova's effect on TER was diminished when 5 micrograms/mL of CH was added to the medium during the last 11 h of incubation with lova. Topics: Animals; beta-Cyclodextrins; Bridged Bicyclo Compounds, Heterocyclic; Calcium; Cholesterol; Cholesterol Oxidase; Cyclodextrins; Dogs; Enzyme Inhibitors; Farnesyl-Diphosphate Farnesyltransferase; Kidney; Lovastatin; Tight Junctions; Tricarboxylic Acids | 1996 |
Regulation of cholesterol 7 alpha-hydroxylase expression by sterols in primary rat hepatocyte cultures.
The importance of cholesterol and "oxysterols" in the regulation of cholesterol 7 alpha-hydroxylase is not clear. Previous in vivo studies suggest that cholesterol may up-regulate cholesterol 7 alpha-hydroxylase, the rate-limiting enzyme in bile acid biosynthesis, but these studies are open to question as they were carried out in whole animals. Therefore, we used primary rat hepatocytes, cultured in serum-free medium, to determine the effects of cholesterol on the regulation of cholesterol 7 alpha-hydroxylase. Squalestatin, a specific squalene synthase inhibitor, was used to block sterol but not isoprenoid biosynthesis in this system. Squalestatin (1 microM) decreased cholesterol 7 alpha-hydroxylase specific activity to undetectable levels and decreased steady-state mRNA and transcriptional activity to 13% and 47% of controls, respectively. Mevalonolactone (2 mM) failed to restore cholesterol 7 alpha-hydroxylase specific activity or steady-state mRNA levels in squalestatin-treated cells. Addition of cholesterol, delivered in beta-cyclodextrin, to squalestatin-treated cells restored cholesterol 7 alpha-hydroxylase specific activity and steady-state mRNA to control levels in a concentration (25 microM to 200 microM) -dependent manner. In contrast, the individual addition of selected "oxysterols" (5-cholesten-3 beta, 7 alpha-diol; 5 alpha-cholestan-3 beta, 6 alpha-diol; cholestan-3 beta, 5 alpha,6 beta-triol; 5-(25R)-cholesten-3 beta,26-diol, all at 50 microM) failed to restore cholesterol 7 alpha-hydroxylase mRNA levels in squalestatin-treated cells. These experiments provide evidence that cholesterol rather than "oxysterols" regulate cholesterol 7 alpha-hydroxylase gene expression. Squalestatin (1 microM) treatment increased HMG-CoA reductase specific activity by 229% of controls. Addition of cholesterol (200 microM), but not mevalonolactone (2 mM), to squalestatin-treated cells decreased HMG-CoA reductase specific activity to 19% of control. The primary rat hepatocyte culture system in conjunction with a specific squalene synthetase inhibitor should be a useful model for elucidating the mechanism of regulation of cholesterol 7 alpha-hydroxylase gene expression by sterols. Topics: Animals; beta-Cyclodextrins; Bridged Bicyclo Compounds; Bridged Bicyclo Compounds, Heterocyclic; Cells, Cultured; Cholesterol; Cholesterol 7-alpha-Hydroxylase; Cyclodextrins; Farnesyl-Diphosphate Farnesyltransferase; Gene Expression Regulation; Hydroxymethylglutaryl CoA Reductases; Male; Mevalonic Acid; Microsomes, Liver; Oxidation-Reduction; Rats; Rats, Sprague-Dawley; RNA, Messenger; Sterols; Tricarboxylic Acids | 1995 |