sq-29548 has been researched along with fluprostenol* in 1 studies
1 other study(ies) available for sq-29548 and fluprostenol
Article | Year |
---|---|
Pharmacological characterization and identification of EP3 prostanoid receptor binding sites in hamster uterus homogenates.
The pharmacological properties of [(3)H]-prostaglandin E(2) ([(3)H]-PGE(2)) binding to washed homogenates of hamster uterus were determined. Scatchard analysis of competition data yielded dissociation constants (K(d)s) of 30.9 +/- 5.6 nM (n = 3) and apparent receptor density (B(max)) of 25.25 +/- 1.89 pmol g(-1) wet weight tissue (74 +/- 8% specific binding). Competition studies yielded the following affinity parameters (K(i)) for various prostanoids: GR63799X = 13 4 nM; PGE(2) = 17 +/- 3 nM; sulprostone = 64 +/- 5 nM; enprostil = 67 +/- 3 nM; misoprostol = 124 +/- 15 nM; cloprostenol = 187 +/- 33 nM; carba-prostacyclin = 260 +/- 167 nM; iloprost = 555 +/- 162 nM; PGF(2 alpha) = 767 +/- 73 nM; PGD(2) > 3560 nM; fluprostenol = 11 790 +/- 2776 nM; RS93520 = 21 558 +/- 14 228 nM. These data closely matched the pharmacological profile of previously described EP(3) receptors such as in bovine corpus luteum (BCLM) and the cloned mammalian EP(3) receptors. The high correlation between the current hamster uterus pharmacology data vs the EP(3) receptor binding in BCLM (r = 0.94; P < 0.0001), vs cloned human EP(3) receptor (r = 0.94, P < 0.0001), vs the cloned mouse EP(3) receptor binding (r = 0.78; P < 0.002), vs cloned rat EP(3) receptor (r = 0.9, P < 0.0004), and vs EP(3) receptor-mediated functional responses (r = 0.72, P < 0.02) substantiated the conclusion that the hamster uterus contains EP(3) receptor binding sites. Topics: Animals; Binding Sites; Biphenyl Compounds; Bridged Bicyclo Compounds, Heterocyclic; Cattle; Cloprostenol; Cricetinae; Dinoprost; Dinoprostone; Enprostil; Epoprostenol; Fatty Acids, Unsaturated; Female; Hydantoins; Hydrazines; Iloprost; Latanoprost; Misoprostol; Prostaglandins; Prostaglandins E, Synthetic; Prostaglandins F, Synthetic; Receptors, Prostaglandin E; Receptors, Prostaglandin E, EP3 Subtype; Tritium; Uterus | 2004 |