sq-23377 has been researched along with glycylphenylalanine-2-naphthylamide* in 1 studies
1 other study(ies) available for sq-23377 and glycylphenylalanine-2-naphthylamide
Article | Year |
---|---|
Calcium mobilization by nicotinic acid adenine dinucleotide phosphate (NAADP) in rat astrocytes.
Nicotinic acid adenine dinucleotide phosphate (NAADP) has been shown to release intracellular Ca(2+) in several types of cells. We have used Ca(2+)-sensitive fluorescent dyes (Fura-2, Fluo-4) to measure intracellular Ca(2+) in astrocytes in culture and in situ. Bath-applied NAADP elicited a reversible and concentration-dependent Ca(2+) rise in up to 90% of astrocytes in culture (EC(50)=7 microM). The NAADP-evoked Ca(2+) rise was maintained in the absence of extracellular Ca(2+), but was suppressed after depleting the Ca(2+) stores of the ER with ATP (20 microM), with cyclopiazonic acid (10 microM) or with ionomycin (5 microM). P(2) receptor antagonist pyridoxalphosphate-6-azophenyl-2'4'-disulfonic acid (PPADS, 100 microM), IP(3) receptor blocker 2-aminoethoxydiphenyl borate (2-APB, 100 microM) and PLC inhibitor U73122 (10 microM) also reduced or suppressed the NAADP-evoked Ca(2+) rise. NAADP still evoked a Ca(2+) response after application of glycyl-l-phenylalanine-beta-naphthylamide (GPN, 200 microM), which permeabilizes lysosomes, or preincubation with H(+)-ATPase inhibitor bafilomycin A1 (4 microM) and of p-trifluoromethoxy carbonyl cyanide phenylhydrazone (FCCP, 2 microM), that impairs mitochondrial Ca(2+) handling. In acute brain slices, NAADP (10 microM) evoked Ca(2+) transients in cerebellar Bergmann glial cells and in hippocampal astrocytes. Our results suggest that NAADP recruits Ca(2+) from inositol 1,4,5-trisphosphate-sensitive Ca(2+) stores in mammalian astrocytes, at least partly by activating metabotropic P(2)Y receptors. Topics: Animals; Astrocytes; Calcium Signaling; Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone; Cells, Cultured; Dipeptides; Fluorescent Dyes; In Vitro Techniques; Indoles; Inositol Phosphates; Ionomycin; Macrolides; NADP; Purinergic P2 Receptor Antagonists; Rats; Receptors, Purinergic P2; Type C Phospholipases | 2006 |