sq-23377 and diphenyleneiodonium

sq-23377 has been researched along with diphenyleneiodonium* in 2 studies

Other Studies

2 other study(ies) available for sq-23377 and diphenyleneiodonium

ArticleYear
Unique role of NADPH oxidase 5 in oxidative stress in human renal proximal tubule cells.
    Redox biology, 2014, Volume: 2

    NADPH oxidases are the major sources of reactive oxygen species in cardiovascular, neural, and kidney cells. The NADPH oxidase 5 (NOX5) gene is present in humans but not rodents. Because Nox isoforms in renal proximal tubules (RPTs) are involved in the pathogenesis of hypertension, we tested the hypothesis that NOX5 is differentially expressed in RPT cells from normotensive (NT) and hypertensive subjects (HT). We found that NOX5 mRNA, total NOX5 protein, and apical membrane NOX5 protein were 4.2±0.7-fold, 5.2±0.7-fold, and 2.8±0.5-fold greater in HT than NT. Basal total NADPH oxidase activity was 4.5±0.2-fold and basal NOX5 activity in NOX5 immunoprecipitates was 6.2±0.2-fold greater in HT than NT (P=<0.001, n=6-14/group). Ionomycin increased total NOX and NOX5 activities in RPT cells from HT (P<0.01, n=4, ANOVA), effects that were abrogated by pre-treatment of the RPT cells with diphenylene-iodonium or superoxide dismutase. Silencing NOX5 using NOX5-siRNA decreased NADPH oxidase activity (-45.1±3.2% vs. mock-siRNA, n=6-8) in HT. D1-like receptor stimulation decreased NADPH oxidase activity to a greater extent in NT (-32.5±1.8%) than HT (-14.8±1.8). In contrast to the marked increase in expression and activity of NOX5 in HT, NOX1 mRNA and protein were minimally increased in HT, relative to NT; total NOX2 and NOX4 proteins were not different between HT and NT, while the increase in apical RPT cell membrane NOX1, NOX2, and NOX4 proteins in HT, relative to NT, was much less than those observed with NOX5. Thus, we demonstrate, for the first time, that NOX5 is expressed in human RPT cells and to greater extent than the other Nox isoforms in HT than NT. We suggest that the increased expression of NOX5, which may be responsible for the increased oxidative stress in RPT cells in human essential hypertension, is caused, in part, by a defective renal dopaminergic system.

    Topics: Cells, Cultured; Gene Expression Regulation, Enzymologic; Humans; Hypertension; Ionomycin; Isoenzymes; Kidney Tubules, Proximal; Membrane Proteins; NADPH Oxidase 5; NADPH Oxidases; Onium Compounds; Oxidative Stress

2014
High glucose-suppressed endothelin-1 Ca2+ signaling via NADPH oxidase and diacylglycerol-sensitive protein kinase C isozymes in mesangial cells.
    The Journal of biological chemistry, 2003, Sep-05, Volume: 278, Issue:36

    High glucose (HG) is the underlying factor contributing to long term complications of diabetes mellitus. The molecular mechanisms transforming the glomerular mesangial cell phenotype to cause nephropathy including diacylglycerol-sensitive protein kinase C (PKC) are still being defined. Reactive oxygen species (ROS) have been postulated as a unifying mechanism for HG-induced complications. We hypothesized that in HG an interaction between ROS generation, from NADPH oxidase, and PKC suppresses mesangial Ca2+ signaling in response to endothelin-1 (ET-1). In primary rat mesangial cells, growth-arrested (48 h) in 5.6 mM (NG) or 30 mm (HG) glucose, the total cell peak [Ca2+]i response to ET-1 (50 nM) was 630 +/- 102 nM in NG and was reduced to 159 +/- 15 nM in HG, measured by confocal imaging. Inhibition of PKC with phorbol ester down-regulation in HG normalized the ET-1-stimulated [Ca2+]i response to 541 +/- 74 nM. Conversely, an inhibitory peptide specific for PKC-zeta did not alter Ca2+ signaling in HG. Furthermore, overexpression of conventional PKC-beta or novel PKC-delta in NG diminished the [Ca2+]i response to ET-1, reflecting the condition observed in HG. Likewise, catalase or p47phox antisense oligonucleotide normalized the [Ca2+]i response to ET-1 in HG to 521 +/- 58 nM and 514 +/- 48 nM, respectively. Pretreatment with carbonyl cyanide m-chlorophenylhydrazone or rotenone did not restore Ca2+ signaling in HG. Detection of increased intracellular ROS in HG by dichlorofluorescein was inhibited by catalase, diphenyleneiodonium, or p47phox antisense oligonucleotide. HG increased p47phox mRNA by 1.7 +/- 0.1-fold as measured by reverse transcriptase-PCR. In NG, H2O2 increased membrane-enriched PKC-beta and -delta, suggesting activation of these isozymes. HG-enhanced immunoreactivity of PKC-delta visualized by confocal imaging was attenuated by diphenyleneiodium chloride. Thus, mesangial cell [Ca2+]i signaling in response to ET-1 in HG is attenuated through an interaction mechanism between NADPH oxidase ROS production and diacylglycerol-sensitive PKC.

    Topics: Actins; Animals; Calcium; Catalase; Cell Membrane; Cells, Cultured; Diglycerides; Down-Regulation; Electron Transport; Endothelin-1; Glucose; Green Fluorescent Proteins; Hydrogen Peroxide; Ionomycin; Ionophores; Kidney Glomerulus; Luminescent Proteins; Microscopy, Confocal; Microscopy, Fluorescence; Mitochondria; NADPH Oxidases; Oligonucleotides; Oligonucleotides, Antisense; Onium Compounds; Peptides; Phosphoproteins; Protein Isoforms; Protein Kinase C; Protein Kinase C beta; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Signal Transduction; Time Factors; Transfection

2003