sq-23377 has been researched along with ciglitazone* in 2 studies
2 other study(ies) available for sq-23377 and ciglitazone
Article | Year |
---|---|
Inhibition of interleukin-4 production in CD4+ T cells by peroxisome proliferator-activated receptor-gamma (PPAR-gamma) ligands: involvement of physical association between PPAR-gamma and the nuclear factor of activated T cells transcription factor.
Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) has been implicated in the regulation of multiple inflammatory processes. However, little is known of PPAR-gamma in the regulation of interleukin (IL)-4 expression in T cells. In this study, the effects of PPAR-gamma ligands on production of IL-4, a pro-inflammatory cytokine associated with the pathophysiology of allergic diseases, were investigated. 15-Deoxy-Delta12,14 prostaglandin J2 (15d-PGJ2) and ciglitazone, two representative PPAR-gamma ligands, significantly inhibited IL-4 production in both antigen-stimulated primary CD4+ T cells and the phorbol 12-myristate 13-acetate (PMA)/ionomycin-activated EL-4 T cell line. 15d-PGJ2 and ciglitazone inhibited the activation of IL-4 gene promoter in EL-4 T cells transiently transfected with IL-4 promoter/reporter constructs, and the repressive effect mapped to a region in the IL-4 promoter containing binding sites for nuclear factor of activated T cells (NF-AT). The activation of T cells by PMA/ionomycin resulted in a marked enhancement of the binding activities to the NF-AT site that was significantly inhibited by the addition of PPAR-gamma ligands. In cotransfected EL-4 T cells, PPAR-gamma also inhibited the activation of the IL-4 promoter at multiple NF-AT sites in a ligand-dependent manner. NF-ATc1 bound PPAR-gamma both in vivo and in vitro, and the interaction interfaces involved the Rel similarity domain of NF-ATc1. In cotransfections of HeLa cells, PPAR-gamma inhibited the NF-ATc1 transactivation in a ligand-dependent manner. Coexpression of p300 or AP-1 relieved the PPAR-gamma ligand-mediated inhibition of the NF-AT transactivation. From these results, we propose that PPAR-gamma ligand-mediated suppression of IL-4 production in CD4+ T cells may involve both inhibition of the NFAT-DNA interactions and competitive recruitment of transcription integrators between NF-AT and PPAR-gamma. Topics: Animals; Benzhydryl Compounds; Binding Sites; Carcinogens; CD4-Positive T-Lymphocytes; Cell Line; DNA-Binding Proteins; Drug Interactions; E1A-Associated p300 Protein; Epoxy Compounds; Interleukin-4; Ionomycin; Ligands; Mice; Mice, Inbred BALB C; NFATC Transcription Factors; Nuclear Proteins; Promoter Regions, Genetic; Prostaglandin D2; Receptors, Cytoplasmic and Nuclear; Tetradecanoylphorbol Acetate; Thiazolidinediones; Trans-Activators; Transcription Factor AP-1; Transcription Factors; Tumor Cells, Cultured | 2003 |
The nuclear receptor PPAR gamma is expressed by mouse T lymphocytes and PPAR gamma agonists induce apoptosis.
Peroxisome proliferator-activated receptor (PPAR)-gamma is a nuclear hormone receptor that serves as a trans factor to regulate lipid metabolism. Intense interest is focused on PPAR-gamma and its ligands owing to its putative role in adipocyte differentiation. Little is known, however, about the functions of PPAR-gamma in the immune system, especially in T lymphocytes. We demonstrate that both naive and activated ovalbumin-specific T cells from DO11.10-transgenic mice express PPAR-gamma mRNA and protein. In order to determine the function of PPAR-gamma, T cells were stimulated with phorbol 12-myristate 13-acetate and ionomycin or antigen and antigen-presenting cells. Simultaneous exposure to PPAR-gamma ligands (e. g. 15-deoxy-Delta(12, 14)-prostaglandin J(2), troglitazone) showed drastic inhibition of proliferation and significant decreases in cell viability. The decrease in cell viability was due to apoptosis of the T lymphocytes, and occurred only when cells were treated with PPAR-gamma, and not PPAR-alpha agonists, revealing specificity of this response for PPAR-gamma. These observations suggest that PPAR-gamma agonists play an important role in regulating T cell-mediated immune responses by inducing apoptosis. T cell death via PPAR-gamma ligation may act as a potent anti-inflammatory signal in the immune system, and ligands could possibly be used to control disorders in which excessive inflammation occurs. Topics: Animals; Antigen Presentation; Apoptosis; Cell Division; Cell Survival; Cells, Cultured; Chromans; Flow Cytometry; Immunohistochemistry; In Situ Nick-End Labeling; Ionomycin; Ligands; Lymphocyte Activation; Mice; Mice, Inbred BALB C; Mice, Transgenic; Prostaglandin D2; Pyrimidines; Receptors, Cytoplasmic and Nuclear; RNA, Messenger; Specific Pathogen-Free Organisms; T-Lymphocytes; Tetradecanoylphorbol Acetate; Thiazoles; Thiazolidinediones; Transcription Factors; Troglitazone | 2001 |