sq-23377 has been researched along with calcium-specific-chelator* in 2 studies
2 other study(ies) available for sq-23377 and calcium-specific-chelator
Article | Year |
---|---|
Gel-based protease proteomics for identifying the novel calpain substrates in dopaminergic neuronal cell.
Calpains are a family of calcium-dependent cysteine proteases that are ubiquitously expressed in mammals and play critical roles in neuronal death by catalyzing substrate proteolysis. Here, we developed two-dimensional gel electrophoresis-based protease proteomics to identify putative calpain substrates. To accomplish this, cellular lysates from neuronal cells were first separated by pI, and the immobilized sample on a gel strip was incubated with a recombinant calpain and separated by molecular weight. Among 25 altered protein spots that were differentially expressed by at least 2-fold, we confirmed that arsenical pump-driving ATPase, optineurin, and peripherin were cleaved by calpain using in vitro and in vivo cleavage assays. Furthermore, we found that all of these substrates were cleaved in MN9D cells treated with either ionomycin or 1-methyl-4-phenylpyridinium, both of which cause a calcium-mediated calpain activation. Their cleavage was blocked by calcium chelator or calpain inhibitors. In addition, calpain-mediated cleavage of these substrates and its inhibition by calpeptin were confirmed in a middle cerebral artery occlusion model of cerebral ischemia, as well as a stereotaxic brain injection model of Parkinson disease. Transient overexpression of each protein was shown to attenuate 1-methyl-4-phenylpyridinium-induced cell death, indicating that these substrates may confer protection of varying magnitudes against dopaminergic injury. Taken together, the data indicate that our protease proteomic method has the potential to be applicable for identifying proteolytic substrates affected by diverse proteases. Moreover, the results described here will help us decipher the molecular mechanisms underlying the progression of neurodegenerative disorders where protease activation is critically involved. Topics: 1-Methyl-4-phenylpyridinium; Animals; Arsenite Transporting ATPases; Calpain; Cell Death; Cell Line; Dipeptides; Dopaminergic Neurons; Electrophoresis, Gel, Two-Dimensional; Glycine; Infarction, Middle Cerebral Artery; Ionomycin; Peripherins; Proteome; Proteomics; Rats; Rats, Sprague-Dawley | 2013 |
Activation of the human neutrophil by calcium-mobilizing ligands. II. Correlation of calcium, diacyl glycerol, and phosphatidic acid generation with superoxide anion generation.
Calcium and protein kinase C (Ca2+/phospholipid-dependent enzyme) have been proposed to act as signals in triggering superoxide anion (O2-) generation by neutrophils. We have probed the adequacy and necessity of calcium and diacylglycerol (DG), activators of protein kinase C, in eliciting O2- generation and degranulation. Activation of neutrophils by the ligand 10(-7) M fMet-Leu-Phe triggered elevation of cytosolic calcium (fura-2) and a rapid, biphasic increase in labeled DG in [14C]glycerol and [3H]arachidonate prelabeled cells. Buffering of the fMet-Leu-Phe-induced elevation of cytosolic calcium with MAPTAM (a cell permeant EGTA analogue) inhibited O2- generation by 90% and degranulation by 50%, concordant with a role of calcium in signaling. However, buffering the increase in calcium also decreased DG. Since phosphatidylinositol 4,5-bisphosphate breakdown in response to fMet-Leu-Phe was not inhibited and phosphatidic acid levels were enhanced in MAPTAM pretreated cells, the removal of calcium may enhance further DG metabolism. Thus, a requirement for calcium could not be differentiated from a requirement for DG, and the profound inhibition of O2- generation in the presence of MAPTAM may reflect removal of DG. Four stimuli, fMet-Leu-Phe, 10(-7) M leukotriene B4, 100 micrograms/ml concanavalin A, and 200 nM ionomycin elevated cytosolic calcium and triggered release of specific granules, but only fMet-Leu-Phe and concanavalin A triggered substantial O2- generation. Nevertheless, all four stimuli significantly increased labeled DG. Therefore, elevated DG and elevated calcium may be necessary but do not appear adequate to elicit O2- generation. Only fMet-Leu-Phe and concanavalin A triggered generation of phosphatidic acid (PA) together with DG. Correlation of O2- generation with PA may reflect a requirement for PA per se or for a specific pool of DG that can be further metabolized to PA. Topics: Calcium; Concanavalin A; Diglycerides; Ethers; Glucuronidase; Glycerides; Glycine; Humans; Ionomycin; Leukotriene B4; Muramidase; N-Formylmethionine Leucyl-Phenylalanine; Neutrophils; Phosphatidic Acids; Phosphatidylinositol 4,5-Diphosphate; Phosphatidylinositols; Protein Kinase C; Superoxides | 1988 |