sq-23377 and benzyloxycarbonylvalyl-alanyl-aspartyl-fluoromethyl-ketone

sq-23377 has been researched along with benzyloxycarbonylvalyl-alanyl-aspartyl-fluoromethyl-ketone* in 3 studies

Other Studies

3 other study(ies) available for sq-23377 and benzyloxycarbonylvalyl-alanyl-aspartyl-fluoromethyl-ketone

ArticleYear
Signaling events involved in anti-CD20-induced apoptosis of malignant human B cells.
    Cancer immunology, immunotherapy : CII, 2000, Volume: 48, Issue:12

    Anti-CD20 monoclonal antibodies have been successfully employed in the clinical treatment of non-Hodgkin's lymphomas in both unmodified and radio-labeled forms. Previous publications have demonstrated that the antitumor effects of unmodified anti-CD20 mAb are mediated by several mechanisms including antibody-dependent cellular cytotoxicity, complement-mediated cell lysis, and induction of apoptosis by CD20 cross-linking. In this report, we demonstrate induction of apoptosis by three anti-CD20 monoclonal antibodies [1F5, anti-B1, and C2B8 (Rituximab)]. The magnitude of apoptosis induction was greater with the chimeric Rituximab antibody than with the murine 1F5 and anti-B1 antibodies. Apoptosis could be enhanced with any of the antibodies by cross-linking with secondary antibodies (or Fc-receptor-bearing accessory cells). The signaling events involved in anti-CD20-induced apoptosis were investigated, including activation of protein tyrosine kinases, increases in intracellular Ca2+ concentrations, caspase activation, and cleavage of caspase substrates. Our results indicate that anti-CD20-induced apoptosis can be attenuated by PP1, an inhibitor of protein tyrosine kinases Lck and Fyn, chelators of extracellular or intracellular Ca2+, and inhibitors of caspases, suggesting that anti-CD20-induced apoptosis may involve modulation of these signaling molecules. We also demonstrated that varying the expression of Bc1-2 did not affect the magnitude of anti-B1-induced apoptosis, possibly because of the sequestering effects of other Bc1-2 family members, such as Bad. These studies identify several of the signal-transduction events involved in the apoptosis of malignant B cells that transpire following ligation of CD20 by anti-CD20 antibodies in the presence of Fc-receptor-expressing cells or secondary goat anti-(mouse Ig) antibodies and which may contribute to the tumor regressions observed in mouse models and clinical trials.

    Topics: Amino Acid Chloromethyl Ketones; Animals; Antibodies, Monoclonal; Antibodies, Monoclonal, Murine-Derived; Antigens, CD20; Apoptosis; B-Lymphocytes; bcl-Associated Death Protein; Burkitt Lymphoma; Calcium; Calcium Signaling; Carrier Proteins; Caspases; Chelating Agents; Cysteine Proteinase Inhibitors; Enzyme Activation; fas Receptor; Humans; Immunoglobulin Fc Fragments; Ionomycin; Lymphoma, B-Cell; Lymphoma, T-Cell; Mice; Phosphoprotein Phosphatases; Phosphorylation; Poly(ADP-ribose) Polymerases; Protein Processing, Post-Translational; Protein-Tyrosine Kinases; Proto-Oncogene Proteins c-bcl-2; Receptor Aggregation; Recombinant Fusion Proteins; Rituximab; Signal Transduction; Tumor Cells, Cultured

2000
Lack of a role for Jun kinase and AP-1 in Fas-induced apoptosis.
    Molecular and cellular biology, 1997, Volume: 17, Issue:1

    Cross-linking of Fas (CD95) induces apoptosis, a response that has been reported to depend upon the Ras activation pathway. Since many examples of apoptosis have been reported to involve AP-1 and/or the AP-1-activation pathway. Since many examples of apoptosis have been reported to involve AP-1 and/or the AP-1-activating enzyme Jun kinase (JNK), downstream effectors of Ras or Ras-like small GTP-binding proteins, we evaluated the role of these molecules in Fas-mediated apoptosis. Although cross-linking of Fas on Jurkat T cells did result in JNK activation, increased activity was observed relatively late, being detectable only after 60 min of stimulation. Expression of a dominant negative form of SEK1 that blocked Fas-mediated induction of JNK activity had no effect on Fas-mediated apoptosis. Furthermore, maximally effective concentrations of anti-Fas did not cause JNK activation if apoptosis was blocked by a cysteine protease inhibitor, suggesting that under these conditions, activation of JNK may be secondary to the stress of apoptosis rather than a direct result of Fas engagement. Despite the activation of JNK, there was no induction of AP-1 activity as determined by gel shift assay or induction of an AP-1-responsive reporter. The lack of a requirement for AP-1 induction in Fas-mediated death was further substantiated with Jurkat cells that were stably transfected with a dominant negative cJun, TAM-67. While TAM-67 effectively prevented AP-1-dependent transcription of both the interleukin-2 and cJun genes, it had no effect on Fas-induced cell death, even at limiting levels of Fas signaling. Thus, induction of JNK activity in Jurkat cells by ligation of Fas at levels sufficient to cause cell death is likely a result, rather than a cause, of the apoptotic response, and AP-1 function is not required for Fas-induced apoptosis.

    Topics: Amino Acid Chloromethyl Ketones; Apoptosis; Calcium-Calmodulin-Dependent Protein Kinases; Cysteine Proteinase Inhibitors; DNA; DNA-Binding Proteins; Enzyme Activation; fas Receptor; Humans; Interleukin-2; Ionomycin; Ionophores; JNK Mitogen-Activated Protein Kinases; Jurkat Cells; MAP Kinase Kinase 4; Mitogen-Activated Protein Kinase Kinases; Mitogen-Activated Protein Kinases; NFATC Transcription Factors; Nuclear Proteins; Protein Kinases; Proto-Oncogene Proteins c-jun; Signal Transduction; Tetradecanoylphorbol Acetate; Transcription Factor AP-1; Transcription Factors

1997
Ligation of CD40 rescues Ramos-Burkitt lymphoma B cells from calcium ionophore- and antigen receptor-triggered apoptosis by inhibiting activation of the cysteine protease CPP32/Yama and cleavage of its substrate PARP.
    FEBS letters, 1996, May-20, Volume: 386, Issue:2-3

    The new and growing family of interleukin-1beta-converting enzyme (ICE) cysteine proteases are now recognised to be major effectors of cellular death by apoptosis. Like other members of this family, the CPP32/Yama proform is activated by processing to its active heterodimeric enzyme or apopain when it likely contributes to the process of apoptosis by cleaving poly(ADP-ribose) polymerase (PARP) and thereby inhibiting much of its DNA repair activity. Apoptosis plays a fundamental role in the regulation of the immune system where it is involved in the selection of both T and B lymphocytes bearing antigen receptor (AgR) for non-self. Cells of the Ramos Epstein-Barr virus (EBV)-genome-negative Burkitt lymphoma (BL) B cell line (Ramos-BL) can be triggered into growth arrest and apoptosis by treating with the calcium ionophore ionomycin or by crosslinking their surface AgR with antibodies directed against immunoglobulin (Ig)M (anti-IgM). Ionomycin- and AgR-triggered growth arrest and apoptosis are arrested by signals transduced through the surface CD40 of Ramos-BL B cells. Both ionomycin and anti-IgM trigger activation of CPP32 and cleavage of PARP prior to the onset of apoptosis; this process is abrogated by treatment with anti-CD40 and is independent of Bcl-2 expression. A tripeptide inhibitor of ICE family cysteine proteases, Z-Val-Ala-Asp-fluoromethylketone (zVAD-fmk) inhibits ionomycin- and AgR-triggered CPP32 activation, PARP cleavage and apoptosis, but not growth arrest, in Ramos-BL B cells. Thus, in this report we demonstrate that in a physiological system, activation of endogenous members of the ICE family, including CPP32, and cleavage of the death substrate PARP act as major effectors of apoptotic death.

    Topics: Amino Acid Chloromethyl Ketones; Animals; Antibodies; Apoptosis; B-Lymphocytes; Burkitt Lymphoma; Calcium; Caspase 3; Caspases; CD40 Antigens; Cell Line; Child, Preschool; Cysteine Endopeptidases; Humans; Immunoglobulin M; Ionomycin; Ionophores; Male; Mice; Poly(ADP-ribose) Polymerases; Protease Inhibitors; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-bcl-2; Receptors, Antigen, B-Cell; Sheep; Time Factors

1996