sq-23377 has been researched along with alpha-naphthoflavone* in 2 studies
2 other study(ies) available for sq-23377 and alpha-naphthoflavone
Article | Year |
---|---|
Activation of the aryl hydrocarbon receptor by the calcium/calmodulin-dependent protein kinase kinase inhibitor 7-oxo-7H-benzimidazo[2,1-a]benz[de]isoquinoline-3-carboxylic acid (STO-609).
This study was designed to analyze the effects of the Ca2+/calmodulin-dependent protein kinase kinase (CaMKK) inhibitor STO-609 (7-oxo-7H-benzimidazo[2,1-a]benz[de]isoquinoline-3-carboxylic acid) toward the aryl hydrocarbon receptor (AhR) pathway because Ca2+/calmodulin-dependent protein kinase (CaMK) Ialpha, known as a downstream CaMKK effector, has been recently shown to contribute to the AhR cascade. STO-609 failed to alter up-regulation of the AhR target CYP1A1 in response to the potent AhR ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in MCF-7 cells. STO-609, used at a 25 muM concentration known to fully inhibit CaMKK activity, was surprisingly found to markedly induce CYP1A1 expression and activity by itself in MCF-7 cells; it similarly up-regulated various other AhR target genes in human macrophages. STO-609-related CYP1A1 induction was prevented by chemical inhibition or small interfering RNA-mediated knockdown expression of AhR. Moreover, STO-609 was demonstrated to physically interact with the ligand-binding domain of AhR, as assessed by TCDD binding competition assay, and to induce AhR translocation to the nucleus. As already reported for AhR agonists, STO-609 triggered the increase of [Ca2+](i) and activation of CaMKIalpha, whose inhibition through the use of the Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester or the CaMK inhibitor KN-93 (2-[N-(2-hydroxyethyl)]-N-(4-methoxybenzenesulfonyl)]amino-N-(4-chlorocinnamyl)-N-methylbenzylamine), respectively, prevented STO-609-mediated CYP1A1 activity induction. Taken together, these results demonstrate that the CaMKK inhibitor STO-609 can act as an AhR ligand and, in this way, fully activates the Ca2+/CaMKIalpha/AhR cascade. Such data, therefore, make unlikely any contribution of CaMKK activity to the AhR pathway and, moreover, suggest that caution may be required when using STO-609 as a specific inhibitor of CaMKKs. Topics: Active Transport, Cell Nucleus; AMP-Activated Protein Kinases; Aryl Hydrocarbon Hydroxylases; Benzimidazoles; Benzoflavones; Benzylamines; Boron Compounds; Calcium Signaling; Calcium-Calmodulin-Dependent Protein Kinase Kinase; Calcium-Calmodulin-Dependent Protein Kinase Type 1; Cell Line, Tumor; Chelating Agents; Cytochrome P-450 CYP1A1; Cytochrome P-450 CYP1B1; Cytochrome P-450 Enzyme System; Egtazic Acid; Enzyme Inhibitors; Gene Expression; Humans; Integrin beta Chains; Interleukin-8; Ionomycin; Macrophages; Naphthalimides; Phosphorylation; Polychlorinated Dibenzodioxins; Receptors, Aryl Hydrocarbon; RNA, Small Interfering; Sulfonamides | 2008 |
Depletion of glutathione by benzo(a)pyrene metabolites, ionomycin, thapsigargin, and phorbol myristate in human peripheral blood mononuclear cells.
Previous studies in this laboratory have shown that polycyclic aromatic hydrocarbons (PAHs) alter Ca2+ homeostasis and inhibit activation of both B and T lymphocytes obtained from rodents and humans. In the present studies, we demonstrate that alpha-naphthoflavone (ANF), an inhibitor of cytochrome P4501A activity, reduced the Ca2+ elevation produced by BaP in human peripheral blood mononuclear cell (HPBMC) lymphocytes. These results suggested that BaP metabolites may play a role in intracellular Ca2+ homeostasis in human lymphocytes. Reactive oxidative intermediates of BaP produced in HPMBC are known to be highly carcinogenic and have also been shown to be immunosuppressive. We examined the effects of benzo(a)pyrene (BaP), 7,12-dimethylbenz(a)anthracene (DMBA), benzo(e)pyrene (BeP), and anthracene, as well as certain BaP metabolites, on the levels of intracellular Ca2+ and glutathione in HPBMC. While BaP, DMBA, BeP, and anthracene did not cause a statistically significant decrease in GSH in HPBMC at concentrations of 1 or 10 microM following a 6-, 48-, or 72-hr exposure, reactive BaP metabolites including 4,5-epoxide BaP and 7,8-diol-9,10-epoxide BaP consistently produced a 20-30% depletion of glutathione in HPBMC following a 6-hr treatment period. These BaP metabolites also elevated intracellular Ca2+ in HPBMC during a 6-hr incubation. Results of these experiments suggest that metabolism of BaP to certain epoxide metabolites may be responsible for sulfhydryl damage leading to transient GSH depletion and Ca2+ elevation. These results are consistent with the hypothesis that sulfhydryl damage by certain PAH metabolites may lead to altered Ca2+ homeostasis, leading to inhibition of cell activation and proliferation in HPBMC. Topics: Benzo(a)pyrene; Benzoflavones; Calcium; Enzyme Activation; Glutathione; Humans; Ionomycin; Lymphocytes; Protein Kinase C; Tetradecanoylphorbol Acetate; Thapsigargin | 1997 |