sq-23377 and 2-5-di-tert-butylhydroquinone

sq-23377 has been researched along with 2-5-di-tert-butylhydroquinone* in 19 studies

Other Studies

19 other study(ies) available for sq-23377 and 2-5-di-tert-butylhydroquinone

ArticleYear
A small component of the endoplasmic reticulum is required for store-operated Ca2+ channel activation in liver cells: evidence from studies using TRPV1 and taurodeoxycholic acid.
    The Biochemical journal, 2009, Mar-15, Volume: 418, Issue:3

    The question of whether the activation of SOCs (store-operated Ca(2+) channels) requires the whole or part of the ER (endoplasmic reticulum) has not been fully resolved. The role of a putative sub-compartment of the ER in SOC activation in liver cells was investigated using ectopically expressed TRPV1 (transient receptor potential vanilloid 1), a non-selective cation channel, and TDCA (taurodeoxycholic acid), an activator of SOCs, to release Ca(2+) from different regions of the ER. TRPV1 was expressed in the ER and in the plasma membrane. The amount of Ca(2+) released from the ER by a TRPV1 agonist, measured using fura-2, was the same as that released by a SERCA (sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase) inhibitor, indicating that TRPV1 agonist-sensitive stores substantially overlap with SERCA inhibitor-sensitive stores. In contrast with SERCA inhibitors, TRPV1 agonists did not activate store-operated Ca(2+) entry. These findings were confirmed by patch-clamp recording. Using FFP-18, it was shown that SERCA inhibitors release Ca(2+) from the ER located closer to the plasma membrane than the region from which TRPV1 agonists release Ca(2+). In contrast with SERCA inhibitors, TRPV1 agonists did not induce a redistribution of STIM1 (stromal interaction molecule 1). TDCA caused the release of Ca(2+) from the ER, which was detected by FFP-18 but not by fura-2, and a redistribution of STIM1 to puncta similar to that caused by SERCA inhibitors. It is concluded that in liver cells, Ca(2+) release from a small component of the ER located near the plasma membrane is required to induce STIM1 redistribution and SOC activation.

    Topics: Animals; Calcium; Calcium Channels; Cell Line; Cell Membrane; Diterpenes; Endoplasmic Reticulum; Hydroquinones; Ionomycin; Liver; Patch-Clamp Techniques; Rats; Ruthenium Red; Sarcoplasmic Reticulum Calcium-Transporting ATPases; Taurodeoxycholic Acid; Transfection; TRPV Cation Channels

2009
Involvement of protein kinase C in the inhibition of lipopolysaccharide-induced nitric oxide production by thapsigargin in RAW 264.7 macrophages.
    The international journal of biochemistry & cell biology, 2005, Volume: 37, Issue:12

    This study explored the effects of inhibition of endoplasmic reticulum (ER) Ca(2+)-ATPase on lipopolysaccharide (LPS)-induced protein kinase C (PKC) activation, nuclear factor-kappaB (NF-kappaB) translocation, inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production in RAW 264.7 macrophages. Thapsigargin (TG) irreversibly inhibits ER Ca(2+)-ATPase and LPS-induced NO production is reduced even after washout. TG also attenuated LPS-stimulated iNOS expression by using immunoblot analysis. However, another distinct fully reversible ER Ca(2+)-ATPase inhibitor, 2,5-di-tert-butylhydroquinone (DBHQ), ionophore A23187 and ionomycin could exert a similar effect to TG in increasing intracellular calcium concentration; however, these agents could not mimic TG in reducing iNOS expression and NO production. LPS increased PKC-alpha and -beta activation, and TG pretreatment attenuated LPS-stimulated PKC activation. Not did pretreatment with DBHQ, A23187 and ionomycin reduce LPS-stimulated PKC activation. Furthermore, NF-kappaB-specific DNA-protein-binding activity in the nuclear extracts was enhanced by treatment with LPS, and TG pretreatment attenuated LPS-stimulated NF-kappaB activation. None of DBHQ, A23187 and ionomycin pretreatment reduced LPS-stimulated NF-kappaB activation. These data suggest that persistent inhibition of ER Ca(2+)-ATPase by TG would influence calcium release from ER Ca2+ pools that was stimulated by the LPS activated signal processes, and might be the main mechanism for attenuating PKC and NF-kappaB activation that induces iNOS expression and NO production.

    Topics: Animals; Calcimycin; Cell Line; Endoplasmic Reticulum; Enzyme Activation; Hydroquinones; Ionomycin; Lipopolysaccharides; Macrophages; Mice; NF-kappa B; Nitric Oxide; Nitric Oxide Synthase Type II; Protein Kinase C; Protein Kinase C beta; Protein Kinase C-alpha; Thapsigargin

2005
Ionomycin and 2,5'-di(tertbutyl)-1,4,-benzohydroquinone elicit Ca2+-induced Ca2+ release from intracellular pools in Physarum polycephalum.
    Comparative biochemistry and physiology. Part A, Molecular & integrative physiology, 2001, Volume: 128, Issue:2

    Calcium level in organelles of the slime mold Physarum polycephalum was monitored by chlortetracycline, a low-affinity calcium indicator. It was found that 2,5'-di(tertbutyl)-1,4,-benzohydroquinone (BHQ) at a concentration of 100 microM, but not the highly specific inhibitor of sarco-endoplasmic reticulum Ca2+-ATPase (SERCA), thapsigargin (1-10 microM), elicited calcium release from the CTC-stained intracellular calcium pool. Ionomycin also caused a calcium release (23.7+/-5.1%), which was less than that induced by BHQ (30.1+/-6.0%). Procaine (10 mM), a blocker of ryanodine receptor, completely abolished the responses to BHQ and ionomycin. Another blocker, ryanodine (100 microM), only slightly diminished the responses to ionomycin and BHQ. Apparently, BHQ and ionomycin acting as a Ca2+-ATPase inhibitor and an ionophore, respectively, elicit an increase in [Ca2+]i, which in turn triggers a calcium-induced calcium release (CICR) via the ryanodine receptor. Caffeine, an activator of ryanodine receptor, at a concentration of 25-50 mM produced a Ca2+-release (5.6-16.0%), which was not similar in magnitude to CICR. The response to 25 mM caffeine was only moderately inhibited by 25 mM procaine, and almost completely abolished by 50 mM procaine and 100 microM ryanodine.

    Topics: Animals; Calcium; Hydroquinones; Ionomycin; Physarum polycephalum; Spectrometry, Fluorescence

2001
The contributions of plasma membrane Na+-Ca2+-exchange and the Ca2+-ATPase to the regulation of cytosolic calcium ([Ca2+]i) in a clonal pituitary cell line (AtT-20) of mouse corticotropes.
    Life sciences, 2001, Dec-28, Volume: 70, Issue:6

    Single cell calcium microfluorimetry was used to examine the regulation of [Ca2+]i homeostasis in a clonal cell line of corticotropes (AtT-20 cells). Single cells, loaded with fura-2/AM, were exposed briefly to elevated potassium chloride (KCI, 40 mM, 5 sec). The time constant of decay of the [Ca2+]i signal was used as an index of [Ca2+]i extrusion and/or sequestration. Substitution of extracellular sodium with lithium, N-methyl-D-glucamine (NMDG), or Tris, increased resting levels of [Ca2+]i and significantly increased the time constant of [Ca2+]i decay by 40% compared to control indicating the participation of Na+-Ca2+-exchange. Prior exposure of single cells to thapsigargin (1 microM) or BuBHQ (10 microM). inhibitors of the SERCA Ca2+-ATPases, and/or the mitochondrial uncoupler FCCP (1 microM) did not significantly change the time constant of [Ca2+]i decay following KCl. Lanthanum ions (La3+), applied during the decay of the KCI-induced increase in [Ca2+]i, significantly increased the time constant of the return of [Ca2+]i to resting levels by 70% compared to control. Brief exposure of cells to sodium orthovanadate, an inhibitor of ATP-dependent pump activity, slowed and longer exposures prevented, the return of [Ca2+]i to resting levels. We conclude that neither intracellular SERCA pumps nor mitochondrial uptake contribute significantly to [Ca2+]i sequestration following a [Ca2+]i load and that the plasma membrane Ca2+-ATPase contributes to a greater extent than the Na+-Ca2+-exchanger to the return of [Ca2+]i to resting levels following a [Ca2+]i load under these experimental conditions.

    Topics: Animals; Calcium-Transporting ATPases; Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone; Cell Line; Cell Membrane; Clone Cells; Enzyme Inhibitors; Fura-2; Hydroquinones; Image Processing, Computer-Assisted; Ionomycin; Lithium; Meglumine; Meglumine Antimoniate; Mice; Organometallic Compounds; Organophosphates; Pituitary Gland; Potassium Chloride; Signal Transduction; Sodium-Calcium Exchanger; Tetraethylammonium; Thapsigargin

2001
Effects of Ca2+-ATPase inhibitors, ionomycin, and pharmacological modulators of ryanodine receptor on calcium release from intracellular pools and on oscillatory contractile behavior in Physarum polycephalum.
    Biochemistry. Biokhimiia, 2000, Volume: 65, Issue:6

    Changes in calcium levels in organelles of the plasmodium of the myxomycete Physarum polycephalum were analyzed using the fluorescent calcium indicator chlortetracycline (CTC). Both the Ca2+-ATPase inhibitor 2,5;-di(tert-butyl)-1,4-benzohydroquinone (BHQ) (100 microM) and the calcium ionophore ionomycin (1 microM) induce a significant decrease in fluorescence level (by 30%) in CTC-stained microplasmodia; this is caused by release of calcium from intracellular storage compartments. An activator of ryanodine receptors, caffeine (10-50 mM), is less effective on Ca2+ release than BHQ or ionomycin, and their inhibitor, ryanodine (100 microM), almost completely blocks the response to caffeine, but only slightly decreases the effects of BHQ or ionomycin. Procaine, another inhibitor of ryanodine receptors, at 10 mM concentration completely abolishes both the BHQ and the ionomycin responses, but 50 mM is necessary to block the effect of 25 mM caffeine. These results suggest that both the BHQ- and the ionomycin-dependent Ca2+ releases occur through the ryanodine receptor and are to be considered as calcium-induced Ca2+ release (CICR). Both the ionomycin and the BHQ responses persist in the presence of Cd2+, which blocks Ca2+ channels of the plasmalemma. In most cases, Cd2+ itself induces release of Ca2+ from the CTC-stained calcium pool; the more effective Cd2+ is, the less the following ionomycin or BHQ responses occur. This indicates that Ca2+ entry through plasmalemma plays no significant role in the ionomycin- or BHQ-evoked initiation of CICR, and that the Cd2+- and BHQ/ionomycin-depleted Ca2+ stores overlap.

    Topics: Animals; Calcium; Calcium-Transporting ATPases; Enzyme Inhibitors; Hydroquinones; Ionomycin; Physarum polycephalum; Ryanodine Receptor Calcium Release Channel; Spectrometry, Fluorescence; Thapsigargin

2000
Nitric oxide inhibits capacitative cation influx in human platelets by promoting sarcoplasmic/endoplasmic reticulum Ca2+-ATPase-dependent refilling of Ca2+ stores.
    Circulation research, 1999, Feb-05, Volume: 84, Issue:2

    Nitric oxide (NO) is a potent inhibitor of thrombin-induced increase in cytoplasmic free Ca2+ concentration and aggregation in platelets, but the precise mechanism of this inhibition is unclear. To measure Ca2+/Mn2+ influx in intact platelets and to monitor Ca2+ uptake into the stores in permeabilized platelets, fura-2 was used. In intact platelets, maximal capacitative Ca2+ and Mn2+ influx developed rapidly (within 30 s) after fast release of Ca2+ from the stores with thrombin (0.5 U/mL) or slowly (within 5 to 10 minutes) following passive Ca2+ leak caused by inhibition of sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) with 30 micromol/L 2,5-di-(tert-butyl)-1,4-benzohydroquinone (BHQ). NO (1 micromol/L) inhibited capacitative Ca2+ and Mn2+ influx independently of the time after thrombin application. In contrast, the effect of NO on BHQ-induced Ca2+ and Mn2+ influx was observed only during the first few minutes after BHQ application and completely disappeared when capacitative cation influx reached its maximum. In Ca2+-free medium, NO reduced the peak Ca2+ rise caused by thrombin and significantly promoted Ca2+ back-sequestration into the stores. Both effects disappeared in the presence of BHQ. Inhibition of guanylate cyclase with H-(1,2,4) oxadiazolo(4,3-a) quinoxallin-1-one (10 micromol/L) attenuated but did not prevent the effects of NO on cytoplasmic free Ca2+ concentration. Inhibition of Ca2+ uptake by mitochondria did not change the effects of NO. In permeabilized platelets, NO accelerated back-sequestration of Ca2+ into the stores after inositol-1,4,5-trisphosphate-induced Ca2+ release or after addition of Ca2+ (1 micromol/L) in the absence of inositol-1,4,5-trisphosphate. The effect of NO depended on the initial rate of Ca2+ uptake and on the concentration of ATP and was abolished by BHQ, indicating the direct involvement of SERCA. These data strongly support the hypothesis that NO inhibits store-operated cation influx in human platelets indirectly via acceleration of SERCA-dependent refilling of Ca2+ stores.

    Topics: Adult; Blood Platelets; Calcium; Calcium Channels; Calcium-Transporting ATPases; Electric Conductivity; Endoplasmic Reticulum; Enzyme Inhibitors; Humans; Hydroquinones; Ionomycin; Ionophores; Manganese; Nitric Oxide; Sarcoplasmic Reticulum; Thrombin

1999
LFA-1-mediated adhesion is regulated by cytoskeletal restraint and by a Ca2+-dependent protease, calpain.
    The Journal of cell biology, 1998, Feb-09, Volume: 140, Issue:3

    The activity of integrins on leukocytes is kept under tight control to avoid inappropriate adhesion while these cells are circulating in blood or migrating through tissues. Using lymphocyte function-associated antigen-1 (LFA-1) on T cells as a model, we have investigated adhesion to ligand intercellular adhesion molecule-1 induced by the Ca2+ mobilizers, ionomycin, 2, 5-di-t-butylhydroquinone, and thapsigargin, and the well studied stimulators such as phorbol ester and cross-linking of the antigen-specific T cell receptor (TCR)-CD3 complex. We report here that after exposure of T cells to these agonists, integrin is released from cytoskeletal control by the Ca2+-induced activation of a calpain-like enzyme, and adhesive contact between cells is strengthened by means of the clustering of mobilized LFA-1 on the membrane. We propose that methods of leukocyte stimulation that cause Ca2+ fluxes induce LFA-1 adhesion by regulation of calpain activity. These findings suggest a mechanism whereby engagement of the TCR could promote adhesion strengthening at an early stage of interaction with an antigen-presenting cell.

    Topics: Calcium; Calpain; Cell Adhesion; Cells, Cultured; Cytoskeleton; Depsipeptides; Humans; Hydroquinones; Intercellular Adhesion Molecule-1; Ionomycin; Lymphocyte Function-Associated Antigen-1; Microscopy, Confocal; Peptides, Cyclic; Signal Transduction; T-Lymphocytes; Thapsigargin

1998
Short-term exposure to low concentrations of thapsigargin inhibits replication of cultured human vascular smooth muscle cells.
    The British journal of surgery, 1997, Volume: 84, Issue:3

    Central to the pathophysiology of stenosis following balloon angioplasty and arterial bypass surgery is proliferation of vascular smooth muscle cells (VSMCs). To investigate the role of calcium (Ca2+) in VSMC proliferation, the effect of thapsigargin, Ca2+ ionophore A23187, ionomycin, cyclopiazonic acid and di-tert-butylhydroquinone (all of which raise intracellular Ca2+ levels) on the proliferation of cultured human VSMCs was observed.. Cultured VSMCs from human saphenous vein were treated with calcium-modulating drugs and proliferation was assessed by determining [3H]thymidine and 5-bromo-2'-deoxyuridine incorporation and cell number.. Over a 48-h exposure, thapsigargin inhibited VSMC replication (median 50 per cent maximal inhibitory concentration 2 nmol/l) whereas the other drugs were much less effective. Short-term exposure (5, 10, 30 and 60 min) to thapsigargin elicited a significant dose-dependent inhibition of VSMC replication whereas, again, the other drugs were without significant effect.. Thapsigargin-sensitive intracellular Ca2+ pools play a key role in controlling VSMC proliferation and specialized means of administering thapsigargin may constitute a possible approach to preventing stenosis.

    Topics: Adult; Aged; Calcimycin; Calcium; Cell Division; Cells, Cultured; Enzyme Inhibitors; Female; Humans; Hydroquinones; Indoles; Ionomycin; Male; Middle Aged; Muscle, Smooth, Vascular; Saphenous Vein; Thapsigargin; Varicose Veins

1997
Ca2+-ATPase inhibitors and Ca2+-ionophore induce osteoclast-like cell formation in the cocultures of mouse bone marrow cells and calvarial cells.
    Biochemical and biophysical research communications, 1997, Aug-08, Volume: 237, Issue:1

    Osteoclasts which derive from hemopoietic cells are multinucleated cells responsible for bone resorption. We found that cyclopiazonic acid (CPA), thapsigargin (TG), and 2,5-di-(t-butyl)-1,4-hydroquinone (BHQ) induced osteoclast-like cell (OCL) formation in cocultures of mouse calvaria-derived stromal cells and hemopoietic cells such as bone marrow cells and spleen cells. OCLs induced by these compounds showed typical characteristics of osteoclasts such as tartrate-resistant acid phosphatase activity and pit forming activity. These compounds are known as endoplasmic reticulum (ER)/sarcoplasmic reticulum (SR) Ca2+-ATPase inhibitors that increase intracellular Ca2+ levels by inhibiting Ca2+-ATPase activity located in the membrane of ER/SR. Ca2+-ionophores such as ionomycin which increase intracellular Ca2+ levels also stimulated OCL formation in the cocultures. Differentiation of hemopoietic cells into OCLs induced by these compounds required the presence of calvarial cells. These results indicate that an increase of intracellular Ca2+ levels may be a part of signaling pathways to induce osteoclast differentiation in the presence of calvarial cells.

    Topics: Animals; Animals, Newborn; Calcium; Calcium-Transporting ATPases; Cell Differentiation; Coated Pits, Cell-Membrane; Coculture Techniques; Enzyme Inhibitors; Hematopoietic Stem Cells; Hydroquinones; Indoles; Ionomycin; Ionophores; Mice; Mice, Inbred Strains; Osteoclasts; Skull; Thapsigargin

1997
Phosphatidylserine synthesis in glioma C6 cells is inhibited by Ca2+ depletion from the endoplasmic reticulum: effects of 2,5-di-tert-butylhydroquinone and thimerosal.
    Biochemical and biophysical research communications, 1996, Jul-25, Volume: 224, Issue:3

    The effects of 2,5-di-tert-butylhydroquinone (DBHQ) and thimerosal on phosphatidylserine synthesis by the base exchange reaction and on calcium mobilization in intact glioma C6 cells were compared with that of thapsigargin, a selective inhibitor of the endoplasmic reticulum Ca(2+)-ATPase. It has been found that all these agents inhibit phosphatidylserine synthesis by 70%, but their effectiveness are different. The data show that this inhibition is caused by Ca2+ depletion of the endoplasmic reticulum, indicating that phosphatidylserine synthesis requires high concentration of Ca2+ within this structure. On this basis and on literature data, a new model for the localization of the serine base exchange enzyme in the endoplasmic reticulum membrane is proposed.

    Topics: Brain Neoplasms; Calcium; Calcium-Transporting ATPases; Endoplasmic Reticulum; Enzyme Inhibitors; Glioma; Hydroquinones; Ionomycin; Phosphatidylserines; Terpenes; Thapsigargin; Thimerosal; Tumor Cells, Cultured

1996
Excitation of Drosophila photoreceptors by BAPTA and ionomycin: evidence for capacitative Ca2+ entry?
    Cell calcium, 1996, Volume: 20, Issue:4

    It has been suggested that excitation in Drosophila photoreceptors may be mediated by the depletion of intracellular Ca2+ stores (capacitative Ca2+ entry). To investigate this hypothesis, simultaneous whole-cell recordings and Indo-1 Ca2+ measurements were made from dissociated Drosophila photoreceptors, whilst testing the effects of Ca2+ releasing agents. In Ca2+ free Ringer's solution, thapsigargin raised cytosolic Ca2+ by approximately 80 nM; subsequent application of ionomycin released further Ca2+ (approximately 100 nM). A possible third compartment was indicated by the ability of monensin to mobilize further Ca2+ after saturating doses of ionomycin. Under most conditions, none of these agents activated an inward conductance, and their effects on the light response were consistent with their effects on cytosolic Ca2+. However, in the absence of both external Ca2+ and Mg2+ (to relieve a Mg2+ block of the light-sensitive channels), and after loading cells with BAPTA buffering cytosolic free Ca2+ at approximately 10 nM, ionomycin (but not thapsigargin) activated inward currents of approximately 800 pA. The response to ionomycin was enhanced (10 nA) by buffering cytosolic Ca2+ at 250 nM. A similar current also developed after approximately 3 min in cells loaded with Ca-BAPTA without any ionomycin application. The current-voltage relationships of currents activated by Ca-BAPTA or ionomycin were indistinguishable from that of the light-activated conductance and were similarly affected by a null mutation of the transient receptor potential (trp) gene which is believed to encode a subunit of the light-sensitive channels. These experiments provide some evidence for the suggestion that the light-activated and trp-dependent conductance in Drosophila photoreceptors can be activated by depletion of internal stores. However, activation by Ca-BAPTA and ionomycin had an absolute requirement for cytosolic Ca2+ as no currents could be activated by ionomycin in cells loaded with BAPTA and no Ca2+.

    Topics: Animals; Calcium; Calcium Channels; Calcium-Transporting ATPases; Chelating Agents; Drosophila; Egtazic Acid; Electric Conductivity; Electrophysiology; Enzyme Inhibitors; Hydroquinones; Ionomycin; Ionophores; Isotonic Solutions; Magnesium; Monensin; Mutagenesis; Photoreceptor Cells, Invertebrate; Ringer's Solution; Signal Transduction; Thapsigargin; TRPC Cation Channels

1996
Two classes of agonist-sensitive Ca2+ stores in platelets, as identified by their differential sensitivity to 2,5-di-(tert-butyl)-1,4-benzohydroquinone and thapsigargin.
    The Biochemical journal, 1995, Sep-01, Volume: 310 ( Pt 2)

    In the absence of extracellular Ca2+, extensive Ca2+ release from the platelet intracellular stores [monitored as an increase of intracellular Ca2+ concentration ([Ca2+]i)] is produced by the combined action of the endomembrane Ca(2+)-ATPase inhibitor thapsigargin and 2 nM ionomycin. The titration of Ca2+ unloading with thapsigargin (plus ionomycin) shows that a substantial fraction of the store-associated Ca2+ is released by 8-10 nM thapsigargin, but that 100-200 nM thapsigargin is required for the complete release. The store depletion obtained in similar conditions with a different endomembrane Ca(2+)-ATPase inhibitor, 2,5-di-(tert-butyl)-1,4-benzohydroquinone (TBHQ), is always incomplete. It is completed by thrombin or by 10 nM thapsigargin. We conclude that two different types of Ca2+ pumps exist in platelets, one sensitive to TBHQ and to high thapsigargin, the other insensitive to TBHQ and sensitive to low thapsigargin. They are distributed separately in discrete subpopulations of the agonist-sensitive stores. The influx of external Ca2+ is maximal when both types of stores are Ca(2+)-depleted, either by high thapsigargin or by the combined action of low thapsigargin and TBHQ.

    Topics: Antioxidants; Blood Platelets; Calcium; Calcium-Transporting ATPases; Cytosol; Dose-Response Relationship, Drug; Humans; Hydroquinones; In Vitro Techniques; Ionomycin; Kinetics; Terpenes; Thapsigargin

1995
Beta 1 integrin-mediated T cell adhesion is regulated by calcium ionophores and endoplasmic reticulum Ca(2+)-ATPase inhibitors.
    Biochemical and biophysical research communications, 1993, Nov-15, Volume: 196, Issue:3

    Treatment of T lymphoblasts with stimuli that mobilize [Ca2+]i, such as ionophores (ionomycin and A23187) and endoplasmic reticulum Ca(2+)-ATPase inhibitors (thapsigargin, 2,5-di-(tert.-butyl)-hydroquinone and cyclopiazonic acid), activated T cell binding to extracellular matrix (ECM) proteins. T lymphoblast adhesion to ECM proteins stimulated by ionomycin, thapsigargin, or PMA was inhibited by an anti-beta 1 integrin mAb (4B4), confirming the role of beta 1 integrins in regulated T cell-ECM interactions. Study of the alpha integrin subunit specificity of activated lymphoblast-fibronectin interactions demonstrated that alpha 5 beta 1 was the major integrin receptor regulating binding to fibronectin. These results indicate that intracellular Ca2+ mobilization plays a major contributory role in the activation of T cell beta 1 integrins.

    Topics: Antibodies, Monoclonal; Antioxidants; Calcimycin; Calcium; Calcium-Transporting ATPases; Cell Adhesion; Cells, Cultured; Collagen; Endoplasmic Reticulum; Fibronectins; Humans; Hydroquinones; Indoles; Integrin beta1; Integrins; Ionomycin; Laminin; T-Lymphocytes; Terpenes; Tetradecanoylphorbol Acetate; Thapsigargin

1993
Dependence of hepatocytic autophagy on intracellularly sequestered calcium.
    The Journal of biological chemistry, 1993, Dec-15, Volume: 268, Issue:35

    Autophagic sequestration of endogenous lactate dehydrogenase or electroinjected [3H]raffinose in isolated rat hepatocytes was strongly suppressed by the Ca2+ chelator EGTA, unless the cells had previously been electroloaded in the presence of high concentrations of Ca2+ (1.2 mM). The extracellular Ca2+ chelator bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid (BAPTA) and the intracellular Ca2+ chelator BAPTA/tetra(acetoxymethyl)-ester (BAPTA/AM) both inhibited autophagy to the same extent as did EGTA. Inhibitors of Ca(2+)-activated protein kinases (KN-62, H-7, W-7) had little or no effect on autophagy, indicating that the Ca2+ requirement of autophagy was not mediated by such kinases. Agents that elevate cytosolic Ca2+ by releasing Ca2+ from intracellular stores, like thapsigargin, 2,5-di-(tert-butyl)-1,4-benzohydroquinone (tBuBHQ) and the ionophores A23187 and ionomycin, inhibited autophagy strongly, implicating depletion of sequestered rather than of cytosolic intracellular Ca2+ as a common mechanism of inhibition. Lysosomal (propylamine-sensitive) protein degradation, known to be largely autophagy-dependent, was inhibited by thapsigargin and tBuBHQ. Thapsigargin had no effect on cellular ATP levels, but all agents tested (thapsigargin, tBuBHQ, ionophores) inhibited protein synthesis. Our results suggest that autophagy, like protein synthesis, is dependent on the presence of Ca2+ in some intracellular storage compartment.

    Topics: Animals; Autophagy; Calcimycin; Calcium; Calcium-Transporting ATPases; Chelating Agents; Hydroquinones; In Vitro Techniques; Ionomycin; Liver; Male; Protein Kinase Inhibitors; Rats; Rats, Wistar; Terpenes; Thapsigargin

1993
Oxidant stress inhibits the store-dependent Ca(2+)-influx pathway of vascular endothelial cells.
    The Biochemical journal, 1993, Jun-01, Volume: 292 ( Pt 2)

    Oxidant stress induced by t-butyl hydroperoxide (t-BuOOH) inhibits bradykinin-stimulated Ca2+ signalling in vascular endothelial cells. The effect of t-BuOOH on intracellular Ca2+ pools was determined by addition of Ca(2+)-releasing agents to fura-2-loaded cells suspended in Ca(2+)-free/EGTA buffer. In control cells, sequential additions of bradykinin and ionomycin produced similar increases in cytosolic free [Ca2+] ([Ca2+]i). By contrast, incubation with t-BuOOH progressively decreased the response of [Ca2+]i to bradykinin and increased that to ionomycin, suggesting that the total (ionomycin-releasable) Ca2+ pool remains replete during oxidant stress. The effect of t-BuOOH on the InsP3-sensitive Ca2+ pool was measured by the increase in [Ca2+]i or efflux of 45Ca2+ stimulated by 2,5-di-t-butylhydroquinone (BHQ). Incubation with t-BuOOH did not inhibit BHQ-stimulated increases in [Ca2+]i or 45Ca2+ efflux, suggesting that the InsP3-sensitive Ca2+ pool remains replete and releasable. Activity of the Ca(2+)-influx pathway stimulated by release of internal Ca2+ stores was determined via re-addition of Ca2+ to BHQ-stimulated cells suspended in Ca(2+)-free/EGTA buffer and via BHQ-stimulated 45Ca2+ uptake. Incubation of cells with t-BuOOH for 1 h significantly inhibited the influx pathway. At later time points, t-BuOOH increased basal [Ca2+]i and potentiated the response of [Ca2+]i to BHQ. Similar results were demonstrated with thapsigargin. Together, these findings suggest that (1) the inhibitory effect of t-BuOOH on bradykinin-stimulated release of Ca2+ from internal stores is not related to depletion of these stores, and (2) inhibition of the store-dependent Ca(2+)-influx pathway occurs by a direct effect of the influx pathway or by inhibition of the mechanism which links the internal Ca2+ store to plasmalemmal Ca2+ influx.

    Topics: Animals; Antioxidants; Biological Transport; Bradykinin; Calcium; Cattle; Cells, Cultured; Endothelium, Vascular; Hydroquinones; Ionomycin; Oxidants; Peroxides; Terpenes; tert-Butylhydroperoxide; Thapsigargin

1993
Distinct sterol and nonsterol signals for the regulated degradation of 3-hydroxy-3-methylglutaryl-CoA reductase.
    The Journal of biological chemistry, 1992, Dec-15, Volume: 267, Issue:35

    The in vivo turnover rate of the endoplasmic reticulum protein 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, the rate-limiting enzyme in the mevalonate (MVA) pathway, is accelerated when excess MVA or sterols are added to the growth medium of cells. As we have shown recently (Roitelman, J., Bar-Nun, S., Inoue, S., and Simoni, R. D. (1991) J. Biol. Chem. 266, 16085-16091), perturbation of cellular Ca2+ homeostasis abrogates the MVA-accelerated degradation of HMG-CoA reductase and HMGal. Here we show that, in contrast, the sterol-accelerated degradation of HMG-CoA reductase is unaffected by Ca2+ perturbation achieved either by Ca2+ ionophore or by inhibitors of the endoplasmic reticulum Ca(2+)-ATPase. The differential effects of Ca2+ perturbation can be attributed neither to global alteration in protein synthesis nor to inhibition of MVA conversion to sterols. Yet, such manipulations markedly reduce the incorporation of MVA into cellular macromolecules, including prenylated proteins. Furthermore, we directly demonstrate that MVA gives rise to at least two distinct signals, one that is essential to support the effect of sterols and another that operates independently of sterols. Our results indicate that the cellular signals operating in the MVA-accelerated turnover of HMG-CoA reductase are distinct from those involved in the sterol-regulated degradation. A working model for the degradation pathway is proposed.

    Topics: Animals; Antioxidants; beta-Galactosidase; Calcimycin; Calcium; CHO Cells; Cholesterol; Cricetinae; Endoplasmic Reticulum; Homeostasis; Hydroquinones; Hydroxycholesterols; Hydroxymethylglutaryl CoA Reductases; Ionomycin; Kinetics; Mevalonic Acid; Models, Biological; Recombinant Fusion Proteins; Signal Transduction; Sterols; Terpenes; Thapsigargin; Time Factors; Transfection

1992
Agonist-induced inhibition of phosphatidylserine synthesis is secondary to the emptying of intracellular Ca2+ stores in Jurkat T-cells.
    The Biochemical journal, 1992, Dec-15, Volume: 288 ( Pt 3)

    The biosynthesis of phosphatidylserine (PtdSer) by the serine base-exchange enzyme system, in Jurkat T-lymphocytes, was inhibited in intact cells maintained in low-Ca(2+)-containing buffer (< 10 microM-Ca2+) by using Ca2+ ionophores (A23187 or ionomycin). The rise in cytosolic Ca2+ concentration under these experimental conditions was only due to the release of Ca2+ from intracellular compartments, suggesting that the inhibition of PtdSer synthesis was correlated with the emptying of intracellular Ca2+ pools. This was further studied in saponin-permeabilized cells, in which PtdSer synthesis was found to be inhibited by EGTA, Ca2+ ionophores (A23187 or ionomycin) and Ca(2+)-ATPase inhibitors [thapsigargin or 2,5-di-(t-butyl)-benzohydroquinone]. Since Ca(2+)-ATPase inhibitors impaired refilling of the Ca2+ stores with Ca2+, and since in CD3-activated Jurkat T-cells the Ca2+ stores remained empty after 1 h of treatment with anti-CD3 monoclonal antibodies, we suggest that PtdSer synthesis is mainly regulated by the level of Ca2+ in the intracellular compartments and that the Ca(2+)-dependent serine base-exchange system responsible for PtdSer synthesis is probably located within or close to a Ca(2+)-storage organelle.

    Topics: Antibodies, Monoclonal; Calcimycin; Calcium; CD3 Complex; Cell Membrane Permeability; Cells, Cultured; Humans; Hydroquinones; Inositol 1,4,5-Trisphosphate; Intracellular Fluid; Ionomycin; Lymphocyte Activation; Phosphatidylserines; T-Lymphocytes; Terpenes; Thapsigargin

1992
Cyclic GMP stimulates Na+/Ca2+ exchange in vascular smooth muscle cells in primary culture.
    The Journal of biological chemistry, 1991, Jul-05, Volume: 266, Issue:19

    We examined the effect of cGMP on Na+/Ca2+ exchange in rat aortic smooth muscle cells (VSMCs) in primary culture. The intracellular Ca2+ concentration [( Ca2+]i) was raised by adding ionomycin to VSMCs incubated at high extracellular pH (pH0) (pH0 = 8.8) and high extracellular Mg2+ (Mg2+0) (Mg2+0 = 20 mM), conditions that inhibit activity of the sarcolemmal Ca2+ pump. 45Ca2+ efflux observed under these conditions was mostly extracellular Na+ (Na+0)-dependent and thus presumably catalyzed by the Na+/Ca2+ exchanger. Brief treatment of VSMCs with 8-bromo-cGMP or atrial natriuretic peptide increased this Na+0-dependent 45Ca2+ efflux by about 50%. The 8-bromo-cGMP treatment did not significantly influence total cell Na+, membrane potential, and cell pH. Conversely, when VSMCs were loaded with Na+ and then exposed to a Na+0-free medium, the rate of 45Ca2+ uptake into VSMCs increased as cell Na+ increased. Prior treatment of VSMCs with 8-bromo-cGMP accelerated 45Ca2+ uptake by up to 60% without influencing Na+ loading itself. Treatment of VSMCs with 25 microM 2,5-di-(tert-butyl)-1,4-benzohydroquinone, an inhibitor of the sarcoplasmic reticulum Ca(2+)-ATPase, induced a transient elevation of [Ca2+]i. 8-Bromo-cGMP stimulated the rate of recovery phase of this Ca2+ transient measured in the high pHo/high Mg2+o medium. All these results indicate that cGMP stimulates Na+/Ca2+ exchange in VSMCs.

    Topics: 8-Bromo Cyclic Adenosine Monophosphate; Animals; Antioxidants; Calcium; Cells, Cultured; Cyclic GMP; Hydrogen-Ion Concentration; Hydroquinones; Ionomycin; Male; Membrane Potentials; Muscle, Smooth, Vascular; Rats; Rats, Inbred WKY; Sodium

1991
2,5-Di-(tert-butyl)-1,4-benzohydroquinone mobilizes inositol 1,4,5-trisphosphate-sensitive and -insensitive Ca2+ stores.
    FEBS letters, 1990, Nov-12, Volume: 274, Issue:1-2

    In permeabilized rat hepatocytes a maximal concentration (25 microM) of 2,5-di-(tert-butyl)-1,4-benzohydroquineone (tBuBHQ) mobilized 70% of sequestere Ca2+ and a half-maximal effect was produced by 1.7 microM tBuBHQ. Inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) stimulated release of about 40% of the intracellular Ca2+ stores. Combined applications of a range of tBuBHQ concentrations with a maximal concentration of Ins(1,4,5)P3 demonstrated that tBuBHQ has slight selectivity for the Ca2+ transport process of the Ins(1,4,5)P3-sensitive stores. We conclude that the Ins(1,4,5)P3-sensitive stores are a subset of those sensitive to tBuBHQ and that the latter is therefore unlikely to prove useful as a tool to discriminate Ins(1,4,5)P3-sensitive and -insensitive Ca2+ stores though it may provide opportunities to design more selective agents.

    Topics: Animals; Antioxidants; Calcium; Cell Membrane Permeability; Cells, Cultured; Hydroquinones; Inositol 1,4,5-Trisphosphate; Ionomycin; Kinetics; Liver; Rats

1990