spiruchostatin-a has been researched along with romidepsin* in 3 studies
1 review(s) available for spiruchostatin-a and romidepsin
Article | Year |
---|---|
Histone deacetylase inhibitors from microorganisms: the Astellas experience.
Histone deacetylase (HDAC) inhibitors, such as trichostatin A and trapoxin, which were first found in microorganisms, potently and selectively inhibit HDAC enzymes. They have made a strong contribution to research on HDACs, chromatin control, abnormal epigenetic control in various diseases and the significance of acetylation in posttranslational modification. Recently, HDAC inhibitors have been focused on as potential drugs for the treatment of several diseases, including cancer, although trichostatin A and trapoxin show no effects in animal models because of their metabolic instability in vivo. Chemical modification has been conducted in order to overcome this drawback. We discovered the microbial metabolites FK228 (also known as FR901228, romidepsin, depsipeptide, NSC-630176 and NSC-630176D) and YM753 (spiruchostatin A). Both compounds have bicyclic structures and represent a novel structural class of HDAC inhibitor. The enzyme and tumor cell growth inhibitory activities of FK228 were found to be very potent. It also showed potent HDAC inhibitory activity in vivo. FK228 is the first potent HDAC inhibitor to undergo clinical development as a potential treatment for solid and hematological cancers. Due to its dramatic effect in patients with refractory cutaneous T-cell lymphoma (CTCL), in October 2004 the US Food & Drug Administration (FDA) granted fast-track status to FK228 as monotherapy for the treatment of CTCL in patients who have relapsed following, or become refractory to, another systemic therapy. Thus HDAC inhibitors such as FK228 and YM753 have potential as tools for life science studies and also as therapeutic agents for various intractable diseases. Topics: Animals; Antineoplastic Agents; Bacteria; Biological Products; Cell Line, Tumor; Cell Proliferation; Depsipeptides; Enzyme Inhibitors; Histone Acetyltransferases; Humans; Lymphoma, T-Cell, Cutaneous; Molecular Structure; Peptides, Cyclic; Structure-Activity Relationship; Treatment Outcome | 2008 |
2 other study(ies) available for spiruchostatin-a and romidepsin
Article | Year |
---|---|
Thailandepsins: bacterial products with potent histone deacetylase inhibitory activities and broad-spectrum antiproliferative activities.
Histone deacetylase (HDAC) inhibitors have emerged as a new class of anticancer drugs, with one synthetic compound, SAHA (vorinostat, Zolinza; 1), and one natural product, FK228 (depsipeptide, romidepsin, Istodax; 2), approved by FDA for clinical use. Our studies of FK228 biosynthesis in Chromobacterium violaceum no. 968 led to the identification of a cryptic biosynthetic gene cluster in the genome of Burkholderia thailandensis E264. Genome mining and genetic manipulation of this gene cluster further led to the discovery of two new products, thailandepsin A (6) and thailandepsin B (7). HDAC inhibition assays showed that thailandepsins have selective inhibition profiles different from that of FK228, with comparable inhibitory activities to those of FK228 toward human HDAC1, HDAC2, HDAC3, HDAC6, HDAC7, and HDAC9 but weaker inhibitory activities than FK228 toward HDAC4 and HDAC8, the latter of which could be beneficial. NCI-60 anticancer screening assays showed that thailandepsins possess broad-spectrum antiproliferative activities with GI50 for over 90% of the tested cell lines at low nanomolar concentrations and potent cytotoxic activities toward certain types of cell lines, particularly for those derived from colon, melanoma, ovarian, and renal cancers. Thailandepsins thus represent new naturally produced HDAC inhibitors that are promising for anticancer drug development. Topics: Animals; Antineoplastic Agents; Bacterial Proteins; Burkholderia; Cell Proliferation; Depsipeptides; Drug Screening Assays, Antitumor; HCT116 Cells; Histone Deacetylase Inhibitors; Humans; Mice; Molecular Structure; National Cancer Institute (U.S.); Peptides, Cyclic; United States | 2011 |
Total synthesis of the bicyclic depsipeptide HDAC inhibitors spiruchostatins A and B, 5''-epi-spiruchostatin B, FK228 (FR901228) and preliminary evaluation of their biological activity.
The bicyclic depsipeptide histone deacetylase (HDAC) inhibitors spiruchostatins A and B, 5''-epi-spiruchostatin B and FK228 were efficiently synthesized in a convergent and unified manner. The synthetic method involved the following crucial steps: i) a Julia-Kocienski olefination of a 1,3-propanediol-derived sulfone and a L- or D-malic acid-derived aldehyde to access the most synthetically challenging unit, (3S or 3R,4E)-3-hydroxy-7-mercaptohept-4-enoic acid, present in a D-alanine- or D-valine-containing segment; ii) a condensation of a D-valine-D-cysteine- or D-allo-isoleucine-D-cysteine-containing segment with a D-alanine- or D-valine-containing segment to directly assemble the corresponding seco-acids; and iii) a macrocyclization of a seco-acid using the Shiina method or the Mitsunobu method to construct the requisite 15- or 16-membered macrolactone. The present synthesis has established the C5'' stereochemistry of spiruchostatin B. In addition, HDAC inhibitory assay and the cell-growth inhibition analysis of the synthesized depsipeptides determined the order of their potency and revealed some novel aspects of structure-activity relationships. It was also found that unnatural 5''-epi-spiruchostatin B shows extremely high selectivity (ca. 1600-fold) for class I HDAC1 (IC(50)=2.4 nM) over class II HDAC6 (IC(50)=3900 nM) with potent cell-growth-inhibitory activity at nanomolar levels of IC(50) values. Topics: Antineoplastic Agents; Cell Line, Tumor; Depsipeptides; Drug Screening Assays, Antitumor; Histone Deacetylase Inhibitors; Histone Deacetylases; Humans; Peptides, Cyclic; Structure-Activity Relationship | 2009 |