spirilloxanthin and neurosporene

spirilloxanthin has been researched along with neurosporene* in 5 studies

Other Studies

5 other study(ies) available for spirilloxanthin and neurosporene

ArticleYear
Origin of the S* Excited State Feature of Carotenoids in Light-Harvesting Complex 1 from Purple Photosynthetic Bacteria.
    The journal of physical chemistry. B, 2017, 08-17, Volume: 121, Issue:32

    This spectroscopic study investigates the origin of the transient feature of the S* excited state of carotenoids bound in LH1 complexes from purple bacteria. The studies were performed on two RC-LH1 complexes from Rba. sphaeroides strains that bound carotenoids with different carbon-carbon double bond conjugation N, neurosporene (N = 9) and spirilloxanthin (N = 13). The S* transient spectral feature, originally associated with an elusive and optically silent excited state of spirilloxanthin in the LH1 complex, may be successfully explained and mimicked without involving any unknown electronic state. The spectral and temporal characteristics of the S* feature suggest that it is associated with triplet-triplet annihilation of carotenoid triplets formed after direct excitation of the molecule via a singlet fission mechanism. Depending on pigment homogeneity and carotenoid assembly in the LH1 complex, the spectro-temporal component associated with triplet-triplet annihilation may simply resolve a pure T-S spectrum of a carotenoid. In some cases (like spirilloxanthin), the T-S feature will also be accompanied by a carotenoid Stark spectrum and/or residual transient absorption of minor carotenoid species bound into LH1 antenna complex.

    Topics: Carotenoids; Light-Harvesting Protein Complexes; Photosynthesis; Quantum Theory; Rhodobacter sphaeroides; Spectrometry, Fluorescence; Spectrophotometry; Xanthophylls

2017
Effect of Illumination Intensity and Inhibition of Carotenoid Biosynthesis on Assembly of Peripheral Light-Gathering Complexes in Purple Sulfur Bacteria C Allochromatium vinosum ATCC 17899.
    Mikrobiologiia, 2016, Volume: 85, Issue:4

    Effect of illumination intensity and inhibition of carotenoid biosynthesis on assemblage of different spectral types of LH2 complexes in a purple sulfur bacterium Allochromatium (Alc.) vinosum ATCC 17899 was studied. Under illumination of 1200 and 500 lx, the complexes B800-850 and B800-840 and B800-820 were assembled. While rhodopine was the major carotenoid in all spectral types of the LH2 complex, a certain- increase in the content of carotenoids with higher numbers of conjugated double bonds (anhydrorhodovibrin and didehydrorhodovibrin) was observed in the B800-820 complex. At 1200 lx, the cells grew slowly at diphe- nylamine (DPA) concentrations not exceeding 53 .iM, while at illumination intensity decreased to 500 Ix they could grow at 71 jiM DPA (DPA cells). Independent on illumination level, the inhibitor is supposed to impair the functioning of phytoine synthetase (resulting in a decrease in the total carotenoid content) and of phyto- ine desturase, which results in formation of neurosporene hydroxy derivatives and ;-carotene. In the cells grown at 500 lx, small amounts of spheroidene and.OH-spheroidene were detected. These carotenoids were originally found under conditions of carotenoid synthesis inhibition in bacteria with spirilloxanthin as the major carotenoid. Carotenoid content in the LH2 complexes isolated from the DPA cells was -15% of the control (without inhibition) for the B800-850 and -20%of the control for the B800-820 and B800-840 DPA complexes. Compared to the DPA pigment-containing membranes, the DPA complexes were enriched with -carotenoids due to- disintegration of some carotenoid-free complexes in the course of isolation. These results support the supposition that some of the B800-820, B800-840, and B800-850 complexes may be Assembled in the cells of Alc. vinosum ATCC 17899 without carotenoids. Comparison of the characteristics obtained for Alc. vinosum ATCC 17899 and the literature data on strain D of the same bacteria shows that they belong to two different strains, rather than to one as was previously supposed.

    Topics: Bacterial Proteins; Carotenoids; Chromatiaceae; Culture Media; Diphenylamine; Dose-Response Relationship, Radiation; Gene Expression; Ligases; Light; Light-Harvesting Protein Complexes; Mixed Function Oxygenases; Xanthophylls; zeta Carotene

2016
Distribution of colored carotenoids between light-harvesting complexes in the process of recovering carotenoid biosynthesis in Ectothiorhodospira haloalkaliphila cells.
    Journal of photochemistry and photobiology. B, Biology, 2014, Volume: 141

    The processes of recovering colored-carotenoid (Car) biosynthesis in Car-less cells of the purple sulfur bacterium Ectothiorhodospira haloalkaliphila grown with diphenylamine (DPA-cells) have been studied. It has been found that (1) the rate of recovering colored-Car biosynthesis in the lag-phase is far ahead of the growth rate of the cells themselves; (2) several Cars (ζ-carotene, neurosporene etc.) act as intermediates in Car biosynthesis; (3) because filling the "empty" Car pockets in the LH1-RC complexes is faster than in LH2, available spirilloxanthin is preferentially incorporated into the nascent LH1-RC core particles; (4) as a consequence of the resulting lack of spirilloxanthin availability, the biosynthetic intermediates (anhydrorhodovibrin, rhodopin and lycopene) fill the empty nascent LH2 Car pockets. In the present report, we further discuss the process of colored Car incorporation into LH complexes during the recovery of Car biosynthesis in the DPA-cells of Ect.haloalkaliphila.

    Topics: Carotenoids; Diphenylamine; Ectothiorhodospira; Light-Harvesting Protein Complexes; Spectrophotometry; Xanthophylls

2014
Carotenoid radical formation: dependence on conjugation length.
    The journal of physical chemistry. B, 2011, Aug-04, Volume: 115, Issue:30

    The relative energy of carotenoid neutral radicals formed by proton loss from the radical cations of linear carotenoids has been examined as a function of conjugation length from n = 15 to 9. For a maximum conjugation length of n = 15 (bisdehydrolycopene, a symmetrical compound), proton loss can occur from any of the 10 methyl groups, with proton loss from the methyl group at position C1 or C1' being the most favorable. In contrast, the most energetically favorable proton loss from the radical cations of lycopene, neurosporene, spheroidene, spheroidenone, spirilloxanthin, and anhydrorhodovibrin occurs from methylene groups that extend from the conjugated system. For example, decreasing the conjugation length to n = 11 (lycopene) by saturation of the double bonds C3-C4 and at C3'-C4' of bisdehydrolycopene favors proton loss at C4 or C4' methylene groups. Saturation at C7'-C8' in the case of neurosporene, spheroidene, and spheroidenone (n = 9, 10, 11) favors the formation of a neutral radical at the C8' methylene group. Saturation of C1-C2 by addition of a methoxy group to a bisdehydrolycopene-like structure with conjugation of n = 12 or 13 (anhydrorhodovibrin, spirilloxanthin) favors proton loss at the C2 methylene group. As a consequence of deprotonation of the radical cation, the unpaired electron spin distribution changes so that larger β-methyl proton couplings occur for the neutral radicals (13-16 MHz) than for the radical cation (7-10 MHz), providing a means to identify possible carotenoid radicals in biological systems by Mims ENDOR.

    Topics: Carotenoids; Electron Spin Resonance Spectroscopy; Free Radicals; Lycopene; Protons; Thermodynamics; Xanthophylls

2011
Ultrafast dynamics and excited state spectra of open-chain carotenoids at room and low temperatures.
    The journal of physical chemistry. B, 2007, May-31, Volume: 111, Issue:21

    Many of the spectroscopic features and photophysical properties of carotenoids are explained using a three-state model in which the strong visible absorption of the molecules is associated with an S0 (1(1)Ag-) --> S2 (1(1)Bu+) transition, and the lowest lying singlet state, S1 (2(1)Ag-), is a state into which absorption from the ground state is forbidden by symmetry. However, semiempirical and ab initio quantum calculations have suggested additional excited singlet states may lie either between or in the vicinity of S1 (2(1)Ag-) and S2 (1(1)Bu+), and some ultrafast spectroscopic studies have reported evidence for these states. One such state, denoted S*, has been implicated as an intermediate in the depopulation of S2 (1(1)Bu+) and as a pathway for the formation of carotenoid triplet states in light-harvesting complexes. In this work, we present the results of an ultrafast, time-resolved spectroscopic investigation of a series of open-chain carotenoids derived from photosynthetic bacteria and systematically increasing in their number of pi-electron carbon-carbon double bonds (n). The molecules are neurosporene (n = 9), spheroidene (n = 10), rhodopin glucoside (n = 11), rhodovibrin (n = 12), and spirilloxanthin (n = 13). The molecules were studied in acetone and CS2 solvents at room temperature. These experiments explore the effect of solvent polarity and polarizability on the spectroscopic and kinetic behavior of the molecules. The molecules were also studied in ether/isopentane/ethanol (EPA) glasses at 77 K, in which the spectral resolution is greatly enhanced. Analysis of the data using global fitting techniques has revealed the ultrafast dynamics of the excited states and spectral changes associated with their decay, including spectroscopic features not previously reported. The data are consistent with S* being identified with a twisted conformational structure, the yield of which is increased in molecules having longer pi-electron conjugations. In particular, for the longest molecule in the series, spirilloxanthin, the experiments and a detailed quantum computational analysis reveal the presence of two S* states associated with relaxed S1 (2(1)Ag-) conformations involving nearly planar 6-s-cis and 6-s-trans geometries. We propose that in polar solvents, the ground state of spirilloxanthin takes on a corkscrew conformation that generates a net solute dipole moment while decreasing the cavity formation energy. Upon excitation and relaxation into the S1

    Topics: Carotenoids; Glucosides; Kinetics; Models, Chemical; Molecular Structure; Quantum Theory; Rhodobacter sphaeroides; Rhodopseudomonas; Sensitivity and Specificity; Spectrum Analysis; Temperature; Vibration; Xanthophylls

2007