spinetoram has been researched along with cypermethrin* in 4 studies
4 other study(ies) available for spinetoram and cypermethrin
Article | Year |
---|---|
Evidence of population expansion and insecticide resistance mechanism in invasive fall armyworm (Spodoptera frugiperda).
The invasive and calamitous polyphagous pest Spodoptera frugiperda or commonly known as fall armyworm (FAW) poses serious menace to the global agricultural production. Owing to the revamped invasion of FAW in 2018 in India, present study was undertaken for precise assessment of its genetic identity and pesticide resistance to aid in pest-management strategies.. To evaluate the diversity in FAW population across Eastern India, mitochondrial COI sequences were used which revealed a low nucleotide diversity. Analysis of molecular variance indicated significant genetic variation between four global geographical FAW populations with lowest differentiation between India and Africa suggesting a present-day and shared origin of FAW. The study demonstrated existence of two different strains ('R' strain and 'C' strain) based on COI gene marker. However, discrepancies between COI marker and host plant association of FAW was observed. Characterization of Tpi gene revealed abundance of TpiCa1a followed by TpiCa2b and TpiR1a strains respectively. The FAW population showed higher susceptibility towards chlorantraniliprole and spinetoram than cypermethrin. Insecticide resistance genes depicted marked upregulation although with lot of variance. Chlorantraniliprole resistance ratio (RR) exhibited significant correlation with 1950 (Glutathione S-transferase, GST), 9131 (Cytochrome P450, CYP) and 9360 (CYP) genes, while spinetoram and cypermethrin RR was found to correlate with 1950 (GST) and 9360 (CYP) genes.. This study manifests Indian subcontinent as the potential new hotspot for the growth and distribution of FAW population that can be effectively controlled using chlorantraniliprole and spinetoram. This study also adds novel significant information on FAW population across Eastern India for developing a comprehensive pest management approach for S. frugiperda. Topics: Animals; Insecticide Resistance; Larva; Spodoptera | 2023 |
Propensity for resistance development in the invasive berry pest, spotted-wing drosophila (Drosophila suzukii), under laboratory selection.
Over the past 14 years, the invasive vinegar fly, spotted-wing drosophila (Drosophila suzukii), has become one of the most damaging fruit pests in the United States. With regional economic losses estimated as high as $500 million for moderate infestations, D. suzukii control represents an often-untenable cost to growers. Management relies heavily on chemical control, which may be applied up to nine times in one season. The widespread use of chemical controls has led to concerns about insecticide resistance, and resistant field populations have already been documented in California and Michigan.. We cultured sub-populations of three different Minnesota field populations of D. suzukii in the laboratory and exposed them to increasing concentrations of two commonly-used insecticides, zeta-cypermethrin (pyrethroid) and spinetoram (spinosyn). Over the exposure period, the sub-populations experienced an 8- to 45-fold increase in insecticide concentration. We saw significant increases in the median lethal concentration (LC. Our results suggest that field populations of D. suzukii can develop resistance to zeta-cypermethrin and spinetoram in short periods of time under laboratory selection but that resistance to spinosyns occurs more readily than to pyrethroids. These results support other studies that have documented spinosyn resistance in field populations and in laboratory selections. Resistance evolution to spinosyns is a particularly important issue, as they represent one of few organic insecticide options for D. suzukii. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. Topics: Animals; Drosophila; Fruit; Insect Control; Insecticides | 2022 |
Baseline susceptibility of spotted wing Drosophila (Drosophila suzukii) to four key insecticide classes.
The invasive drosophilid pest, Drosophila suzukii Matsumura, is affecting berry production in most fruit-producing regions of the world. Chemical control is the dominant management approach, creating concern for insecticide resistance in this pest. We compared the insecticide susceptibility of D. suzukii populations collected from conventional, organic or insecticide-free blueberry sites.. The sensitivity of D. suzukii to malathion and spinetoram declined slightly across the 3 years of monitoring, whereas it was more consistent for methomyl and zeta-cypermethrin. The sensitivity of D. suzukii to all four insecticides (LC. The baseline sensitivity of D. suzukii has been characterized, allowing future comparisons if field failures of chemical control are reported. The concentration achieving high control indicates that effective levels of control can still be achieved with field rates of these four insecticides. However, declining susceptibility of some populations of D. suzukii to some key insecticides highlights the need for resistance monitoring. © 2017 Society of Chemical Industry. Topics: Animals; Drosophila; Female; Insect Control; Insecticide Resistance; Insecticides; Macrolides; Malathion; Methomyl; Pyrethrins | 2018 |
Susceptibility of field populations of the diamondback moth, Plutella xylostella, to a selection of insecticides in Central China.
The diamondback moth (DBM), Plutella xylostella (L.) (Lepidoptera: Plutellidae), is a globally distributed and important economic pest. Chemical control is the primary approach to regulate populations of this pest. However, resistance to insecticides evolves following heavy and frequent use. Therefore, the insecticide resistance in field populations of P. xylostella collected from Central China from 2013 to 2014 was determined with a leaf-dipping method. Based on the results of the monitoring, P. xylostella has developed high levels of resistance to beta-cypermethrin (resistance ratio=69.76-335.76-fold), Bt (WG-001) (RR=35.43-167.36), and chlorfluazuron (RR=13.60-104.95) and medium levels of resistance to chlorantraniliprole (RR=1.19-14.26), chlorfenapyr (RR=4.22-13.44), spinosad (RR=5.89-21.45), indoxacarb (RR=4.01-34.45), and abamectin (RR=23.88-95.15). By contrast, the field populations of P. xylostella remained susceptible to or developed low levels of resistance to diafenthiuron (RR=1.61-8.05), spinetoram (RR=0.88-2.35), and cyantraniliprole (RR=0.4-2.15). Moreover, the LC50 values of field populations of P. xylostella were highly positively correlated between chlorantraniliprole and cyantraniliprole (r=0.88, P=0.045), chlorantraniliprole and spinosad (r=0.66, P=0.039), spinosad and diafenthiuron (r=0.57, P=0.0060), and chlorfenapyr and diafenthiuron (r=0.51, P=0.016). Additionally, the activities of detoxification enzymes in field populations of P. xylostella were significantly positively correlated with the log LC50 values of chlorantraniliprole and spinosad. The results of this study provide an important base for developing effective and successful strategies to manage insecticide resistance in P. xylostella. Topics: Animals; Bacillus thuringiensis; China; Drug Combinations; Insecticide Resistance; Insecticides; Ivermectin; Macrolides; Moths; ortho-Aminobenzoates; Oxazines; Phenylthiourea; Phenylurea Compounds; Pyrazoles; Pyrethrins; Pyridines | 2016 |