sphingosine-phosphorylcholine and lysophosphatidic-acid

sphingosine-phosphorylcholine has been researched along with lysophosphatidic-acid* in 6 studies

Reviews

2 review(s) available for sphingosine-phosphorylcholine and lysophosphatidic-acid

ArticleYear
Bioactive lysophospholipids and mesangial cell intracellular signaling pathways: role in the pathobiology of kidney disease.
    Histology and histopathology, 2005, Volume: 20, Issue:2

    Lysophosphatidic acid (LPA), lyso-phosphatidylcholine (LPC), and sphingosine-1-phosphate (S1P) are major biologically active lysophospholipids (LPLs) that are produced by activated platelets, monocyte/macrophages, and many types of mammalian cells. LPLs have been shown to induce a wide array of physiological and pathophysiological properties including cellular differentiation, proliferation, migration, extracellular matrix deposition, change in morphology, and chemotactic responses. The recent cloning and identification of G protein-coupled receptors as specific receptors for LPLs created a great deal of interest in LPLs signaling and diverse biological responses. The pathobiological role of LPLs has been implicated in a number of pathological states and human diseases including atherosclerosis, glomerulosclerosis, post-ischemic renal failure, polycystic kidney disease, and ovarian cancer. Although the research in this area is growing at an enormous rate, this review is specifically focused on the recent understanding of the pathophysiological properties of LPA and LPC with special reference to kidney diseases, and their specific G-protein-coupled receptors and intracellular signaling pathways.

    Topics: Animals; Cell Proliferation; Glomerular Mesangium; Humans; Kidney Diseases; Lysophosphatidylcholines; Lysophospholipids; Models, Biological; Phosphorylcholine; Receptors, Lysophosphatidic Acid; Receptors, Lysophospholipid; Signal Transduction; Sphingosine

2005
Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria.
    Acta biomaterialia, 2005, Volume: 1, Issue:1

    We investigate connections between single-cell mechanical properties and subcellular structural reorganization from biochemical factors in the context of two distinctly different human diseases: gastrointestinal tumor and malaria. Although the cell lineages and the biochemical links to pathogenesis are vastly different in these two cases, we compare and contrast chemomechanical pathways whereby intracellular structural rearrangements lead to global changes in mechanical deformability of the cell. This single-cell biomechanical response, in turn, seems to mediate cell mobility and thereby facilitates disease progression in situations where the elastic modulus increases or decreases due to membrane or cytoskeleton reorganization. We first present new experiments on elastic response and energy dissipation under repeated tensile loading of epithelial pancreatic cancer cells in force- or displacement-control. Energy dissipation from repeated stretching significantly increases and the cell's elastic modulus decreases after treatment of Panc-1 pancreatic cancer cells with sphingosylphosphorylcholine (SPC), a bioactive lipid that influences cancer metastasis. When the cell is treated instead with lysophosphatidic acid, which facilitates actin stress fiber formation, neither energy dissipation nor modulus is noticeably affected. Integrating recent studies with our new observations, we ascribe these trends to possible SPC-induced reorganization primarily of keratin network to perinuclear region of cell; the intermediate filament fraction of the cytoskeleton thus appears to dominate deformability of the epithelial cell. Possible consequences of these results to cell mobility and cancer metastasis are postulated. We then turn attention to progressive changes in mechanical properties of the human red blood cell (RBC) infected with the malaria parasite Plasmodium falciparum. We present, for the first time, continuous force-displacement curves obtained from in-vitro deformation of RBC with optical tweezers for different intracellular developmental stages of parasite. The shear modulus of RBC is found to increase up to 10-fold during parasite development, which is a noticeably greater effect than that from prior estimates. By integrating our new experimental results with published literature on deformability of Plasmodium-harbouring RBC, we examine the biochemical conditions mediating increases or decreases in modulus, and their implications for disease progression. Some

    Topics: Animals; Biomechanical Phenomena; Cell Line, Tumor; Elasticity; Erythrocyte Deformability; Erythrocytes; Gastrointestinal Neoplasms; Humans; In Vitro Techniques; Lysophospholipids; Malaria; Pancreatic Neoplasms; Phosphorylcholine; Plasmodium falciparum; Sphingosine

2005

Other Studies

4 other study(ies) available for sphingosine-phosphorylcholine and lysophosphatidic-acid

ArticleYear
Sphingosylphosphorylcholine induces stress fiber formation via activation of Fyn-RhoA-ROCK signaling pathway in fibroblasts.
    Cellular signalling, 2012, Volume: 24, Issue:1

    Sphingosylphosphorylcholine (SPC), a bioactive sphingolipid, has recently been reported to modulate actin cytoskeleton rearrangement. We have previously demonstrated Fyn tyrosine kinase is involved in SPC-induced actin stress fiber formation in fibroblasts. However, Fyn-dependent signaling pathway remains to be elucidated. The present study demonstrates that RhoA-ROCK signaling downstream of Fyn controls stress fiber formation in SPC-treated fibroblasts. Here, we found that SPC-induced stress fiber formation was inhibited by C3 transferase, dominant negative RhoA or ROCK. SPC activated RhoA, which was blocked by pharmacological inhibition of Fyn activity or dominant negative Fyn. Constitutively active Fyn (ca-Fyn) stimulated stress fiber formation and localized with F-actin at the both ends of stress fibers, both of which were prevented by Fyn translocation inhibitor eicosapentaenoic acid (EPA). In contrast, inhibition of ROCK abolished only the formation of stress fibers, without affecting the localization of ca-Fyn. These results allow the identification of the molecular events downstream SPC in stress fiber formation for a better understanding of stress fiber formation involving Fyn.

    Topics: ADP Ribose Transferases; Amino Acid Substitution; Animals; Botulinum Toxins; Enzyme Activation; Fibroblasts; Focal Adhesion Kinase 1; Focal Adhesions; Lysophospholipids; Mice; NIH 3T3 Cells; Phosphorylcholine; Proto-Oncogene Proteins c-fyn; Pseudopodia; Recombinant Proteins; rho GTP-Binding Proteins; rho-Associated Kinases; rhoA GTP-Binding Protein; Signal Transduction; Sphingosine; Stress Fibers

2012
Involvement of Fyn tyrosine kinase in actin stress fiber formation in fibroblasts.
    FEBS letters, 2007, Nov-13, Volume: 581, Issue:27

    Lysophosphatidic acid (LPA) and sphingosylphosphorylcholine (SPC) activated Fyn tyrosine kinase and induced stress fiber formation, which was blocked by pharmacological inhibition of Fyn, gene silencing of Fyn, or dominant negative Fyn. Overexpressed constitutively active Fyn localized at both ends of F-actin bundles and triggered stress fiber formation, only the latter of which was abolished by Rho-kinase (ROCK) inhibition. SPC, but not LPA, induced filopodia-like protrusion formation, which was not mediated by Fyn and ROCK. Thus, Fyn appears to act downstream of LPA and SPC to specifically stimulate stress fiber formation mediated by ROCK in fibroblasts.

    Topics: Actins; Animals; Fibroblasts; Humans; Lysophospholipids; Mice; NIH 3T3 Cells; Phosphorylcholine; Proto-Oncogene Proteins c-fyn; Recombinant Proteins; rho-Associated Kinases; RNA, Small Interfering; Signal Transduction; Sphingosine; Stress Fibers; Transfection

2007
Sphingosylphosphorylcholine-induced vasoconstriction of pulmonary artery: activation of non-store-operated Ca2+ entry.
    Cardiovascular research, 2005, Oct-01, Volume: 68, Issue:1

    Sphingosylphosphorylcholine (SPC) is an important lipid mediator that has been implicated in vascular disease. As it has not been studied in the pulmonary circulation, we examined its mechanisms of action in rat small intrapulmonary arteries (IPA).. IPA were mounted on a myograph for recording tension and intracellular Ca2+ concentration ([Ca2+]i). Ca2+ sensitisation was examined in alpha-toxin permeabilized IPA, and by Western blot analysis of MYPT1 phosphorylation.. SPC induced a slow but powerful vasoconstriction in IPA associated with an elevation in [Ca2+]i, with an EC50 for vasoconstriction of 12+/-2 microM. Removal of extracellular Ca2+ increased the EC50 to 76+/-33 microM (p<0.01) and abolished the rise in [Ca2+]i. Endothelial denudation or inhibition of NO synthase with L-NAME enhanced vasoconstriction. Treatment with pertussis toxin or the PLC inhibitor U731223 had no effect on SPC-induced vasoconstriction. The Rho kinase inhibitor Y27632 reduced SPC-induced vasoconstriction by approximately 70% and abolished both SPC-induced Ca2+ sensitisation in permeabilized IPA and the associated increase in MYPT1 phosphorylation; Ca2+ sensitisation was substantially inhibited by GDPbetaS. La3+ and 2-APB, at concentrations previously shown to block capacitative Ca2+ entry in IPA, suppressed SPC-induced vasoconstriction to the same extent as removal of extracellular Ca2+; residual tension was abolished by Y27632. Diltiazem was relatively ineffective. 2-APB also abolished the SPC-induced rise in [Ca2+]i. However, treatment with thapsigargin to empty intracellular stores had no effect on the elevation of [Ca2+]i induced by SPC.. We present evidence that SPC is a powerful vasoconstrictor of IPA and the novel finding that SPC-induced vasoconstriction in IPA is dependent on activation of a Ca2+ entry pathway with a similar sensitivity to La3+ and 2-APB as capacitative Ca2+ entry, although its activation is not dependent on emptying of PLC/IP3 or thapsigargin-sensitive intracellular stores.

    Topics: Amides; Animals; Blotting, Western; Calcium; Calcium Channel Blockers; Calcium Signaling; Dose-Response Relationship, Drug; G-Protein-Coupled Receptor Kinase 1; In Vitro Techniques; Lanthanum; Lysophospholipids; Muscle, Smooth, Vascular; NG-Nitroarginine Methyl Ester; Nitric Oxide Synthase; Phosphorylcholine; Pulmonary Artery; Pyridines; Rats; Sphingosine; Thapsigargin; Type C Phospholipases; Vasoconstriction

2005
The critical micelle concentrations of lysophosphatidic acid and sphingosylphosphorylcholine.
    Chemistry and physics of lipids, 2004, Volume: 130, Issue:2

    The critical micelle concentrations (CMC) of lysophosphatidic acid (LPA) and sphingosylphosphorylcholine (SPC) were measured by isothermal titration calorimetry. The CMC of LPA decreases with salt concentration and acyl chain length. In water at 25 degrees C, the CMC values of 1-acyl-2-lyso-sn-glycero-3-phosphatidic acid are 1.850, 0.540, 0.082, and 0.346 mM, respectively, when the acyl group is myristoyl, palmitoyl, stearoyl, and oleoyl. The CMC of SPC in 10 mM sodium phosphate buffer, pH 7.4, at 25 degrees C was 0.158 mM, and did not change with an increase in salt concentration.

    Topics: Lysophospholipids; Micelles; Molecular Structure; Phosphorylcholine; Sodium Chloride; Sphingosine; Water

2004