sphingosine-kinase and plerixafor

sphingosine-kinase has been researched along with plerixafor* in 2 studies

Other Studies

2 other study(ies) available for sphingosine-kinase and plerixafor

ArticleYear
Sphingosine-1-phosphate facilitates trafficking of hematopoietic stem cells and their mobilization by CXCR4 antagonists in mice.
    Blood, 2012, Jan-19, Volume: 119, Issue:3

    CXCL12 and VCAM1 retain hematopoietic stem cells (HSCs) in the BM, but the factors mediating HSC egress from the BM to the blood are not known. The sphingosine-1-phosphate receptor 1 (S1P(1)) is expressed on HSCs, and S1P facilitates the egress of committed hematopoietic progenitors from the BM into the blood. In the present study, we show that both the S1P gradient between the BM and the blood and the expression of S1P(1) are essential for optimal HSC mobilization by CXCR4 antagonists, including AMD3100, and for the trafficking of HSCs during steady-state hematopoiesis. We also demonstrate that the S1P(1) agonist SEW2871 increases AMD3100-induced HSC and progenitor cell mobilization. These results suggest that the combination of a CXCR4 antagonist and a S1P(1) agonist may prove to be sufficient for mobilizing HSCs in normal donors for transplantation purposes, potentially providing a single mobilization procedure and eliminating the need to expose normal donors to G-CSF with its associated side effects.

    Topics: Adult; Aged; Animals; Anti-HIV Agents; Benzylamines; Blotting, Western; Cell Movement; Cell Proliferation; Cells, Cultured; Chemokine CXCL12; Cyclams; Cytokines; Drug Combinations; Drug Synergism; Female; Granulocyte Colony-Stimulating Factor; Hematopoietic Stem Cell Mobilization; Hematopoietic Stem Cell Transplantation; Hematopoietic Stem Cells; Heterocyclic Compounds; Humans; Immunoenzyme Techniques; Lysophospholipids; Male; Mice; Mice, Inbred BALB C; Mice, Inbred C57BL; Mice, Inbred DBA; Mice, Knockout; Mice, SCID; Mice, Transgenic; Middle Aged; Oligopeptides; Phosphotransferases (Alcohol Group Acceptor); Prognosis; Real-Time Polymerase Chain Reaction; Receptors, CXCR4; Receptors, Lysosphingolipid; RNA, Messenger; Sphingosine; Sphingosine-1-Phosphate Receptors

2012
S1P promotes murine progenitor cell egress and mobilization via S1P1-mediated ROS signaling and SDF-1 release.
    Blood, 2012, Mar-15, Volume: 119, Issue:11

    The mechanisms of hematopoietic progenitor cell egress and clinical mobilization are not fully understood. Herein, we report that in vivo desensitization of Sphingosine-1-phosphate (S1P) receptors by FTY720 as well as disruption of S1P gradient toward the blood, reduced steady state egress of immature progenitors and primitive Sca-1(+)/c-Kit(+)/Lin(-) (SKL) cells via inhibition of SDF-1 release. Administration of AMD3100 or G-CSF to mice with deficiencies in either S1P production or its receptor S1P(1), or pretreated with FTY720, also resulted in reduced stem and progenitor cell mobilization. Mice injected with AMD3100 or G-CSF demonstrated transient increased S1P levels in the blood mediated via mTOR signaling, as well as an elevated rate of immature c-Kit(+)/Lin(-) cells expressing surface S1P(1) in the bone marrow (BM). Importantly, we found that S1P induced SDF-1 secretion from BM stromal cells including Nestin(+) mesenchymal stem cells via reactive oxygen species (ROS) signaling. Moreover, elevated ROS production by hematopoietic progenitor cells is also regulated by S1P. Our findings reveal that the S1P/S1P(1) axis regulates progenitor cell egress and mobilization via activation of ROS signaling on both hematopoietic progenitors and BM stromal cells, and SDF-1 release. The dynamic cross-talk between S1P and SDF-1 integrates BM stromal cells and hematopoeitic progenitor cell motility.

    Topics: Animals; Benzylamines; Bone Marrow; Cell Movement; Cells, Cultured; Chemokine CXCL12; Colony-Forming Units Assay; Cyclams; Female; Flow Cytometry; Fluorescent Antibody Technique; Granulocyte Colony-Stimulating Factor; Hematopoietic Stem Cell Mobilization; Hematopoietic Stem Cells; Heterocyclic Compounds; Lysophospholipids; Male; Mesenchymal Stem Cells; Mice; Mice, Inbred C57BL; Mice, Knockout; Phosphotransferases (Alcohol Group Acceptor); Reactive Oxygen Species; Receptors, Lysosphingolipid; Signal Transduction; Sphingosine; Stromal Cells

2012