sphingosine-kinase and dihydroceramide

sphingosine-kinase has been researched along with dihydroceramide* in 3 studies

Other Studies

3 other study(ies) available for sphingosine-kinase and dihydroceramide

ArticleYear
A sphingosine kinase inhibitor combined with temozolomide induces glioblastoma cell death through accumulation of dihydrosphingosine and dihydroceramide, endoplasmic reticulum stress and autophagy.
    Cell death & disease, 2014, Sep-25, Volume: 5

    Glioblastomas (GBMs) are very aggressive tumors with low chemosensitivity. The DNA-alkylating agent temozolomide (TMZ) is currently the most efficient chemotoxic drug for GBM therapy; however, many patients develop resistance to TMZ. Combining TMZ with another agent could present an improved treatment option if it could overcome TMZ resistance and avoid side effects. Sphingosine kinase inhibitors (SKIs) have emerged as anticancer agents. Sphingosine kinases are often overexpressed in tumors where their activity of phosphorylating sphingosine (Sph) contributes to tumor growth and migration. They control the levels of the pro-apoptotic ceramide (Cer) and Sph and of the pro-survival sphingosine-1 phosphate. In the present work, TMZ was combined with a specific SKI, and the cytotoxic effect of each drug alone or in combination was tested on GBM cell lines. The combination of sublethal doses of both agents resulted in the cell death potentiation of GBM cell lines without affecting astrocyte viability. It triggered a caspase-3-dependent cell death that was preceded by accumulation of dihydrosphingosine (dhSph) and dihydroceramide (dhCer), oxidative stress, endoplasmic reticulum stress, and autophagy. Autophagy was identified as the crucial switch that facilitated induction of this cell death potentiation. The sublethal dose of the inhibitor induced these stress events, whereas that of TMZ induced the destructive autophagy switch. Remarkably, neither Cer nor Sph, but rather the Cer intermediates, dhSph and dhCer, was involved in the cytotoxicity from the combination. Cell lines sensitive to the combination expressed low levels of the antioxidant enzyme glutathione peroxidase-1, indicating this enzyme as a potential marker of sensitivity to such treatment. This work shows for the first time a strong interaction between a SKI and TMZ, leading to a tumor cell-specific death induction. It further demonstrates the biological relevance of dihydrosphingolipids in cell death mechanisms and emphasizes the potential of drugs that affect sphingolipid metabolism for cancer therapy.

    Topics: Antineoplastic Agents; Apoptosis; Autophagy; Brain Neoplasms; Cell Death; Cell Line, Tumor; Ceramides; Dacarbazine; Drug Resistance, Neoplasm; Drug Therapy, Combination; Endoplasmic Reticulum Stress; Enzyme Inhibitors; Glioblastoma; Humans; Phosphotransferases (Alcohol Group Acceptor); Sphingosine; Temozolomide

2014
FTY720 inhibits ceramide synthases and up-regulates dihydrosphingosine 1-phosphate formation in human lung endothelial cells.
    The Journal of biological chemistry, 2009, Feb-27, Volume: 284, Issue:9

    Novel immunomodulatory molecule FTY720 is a synthetic analog of myriocin, but unlike myriocin FTY720 does not inhibit serine palmitoyltransferase. Although many of the effects of FTY720 are ascribed to its phosphorylation and subsequent sphingosine 1-phosphate (S1P)-like action through S1P(1,3-5) receptors, studies on modulation of intracellular balance of signaling sphingolipids by FTY720 are limited. In this study, we used stable isotope pulse labeling of human pulmonary artery endothelial cells with l-[U-(13)C, (15)N]serine as well as in vitro enzymatic assays and liquid chromatography-tandem mass spectrometry methodology to characterize FTY720 interference with sphingolipid de novo biosynthesis. In human pulmonary artery endothelial cells, FTY720 inhibited ceramide synthases, resulting in decreased cellular levels of dihydroceramides, ceramides, sphingosine, and S1P but increased levels of dihydrosphingosine and dihydrosphingosine 1-phosphate (DHS1P). The FTY720-induced modulation of sphingolipid de novo biosynthesis was similar to that of fumonisin B1, a classical inhibitor of ceramide synthases, but differed in the efficiency to inhibit biosynthesis of short-chain versus long-chain ceramides. In vitro kinetic studies revealed that FTY720 is a competitive inhibitor of ceramide synthase 2 toward dihydrosphingosine with an apparent K(i) of 2.15 microm. FTY720-induced up-regulation of DHS1P level was mediated by sphingosine kinase (SphK) 1, but not SphK2, as confirmed by experiments using SphK1/2 silencing with small interfering RNA. Our data demonstrate for the first time the ability of FTY720 to inhibit ceramide synthases and modulate the intracellular balance of signaling sphingolipids. These findings open a novel direction for therapeutic applications of FTY720 that focuses on inhibition of ceramide biosynthesis, ceramide-dependent signaling, and the up-regulation of DHS1P generation in cells.

    Topics: Cells, Cultured; Ceramides; Chromatography, Liquid; Endothelium, Vascular; Fingolimod Hydrochloride; Humans; Immunosuppressive Agents; Lung; Lysophospholipids; Oxidoreductases; Phosphorylation; Phosphotransferases (Alcohol Group Acceptor); Propylene Glycols; Pulmonary Artery; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; RNA, Small Interfering; Serine C-Palmitoyltransferase; Sphingosine; Tandem Mass Spectrometry; Up-Regulation

2009
(Dihydro)ceramide synthase 1 regulated sensitivity to cisplatin is associated with the activation of p38 mitogen-activated protein kinase and is abrogated by sphingosine kinase 1.
    Molecular cancer research : MCR, 2007, Volume: 5, Issue:8

    Resistance to chemotherapeutic drugs often limits their clinical efficacy. Previous studies have implicated the bioactive sphingolipid sphingosine-1-phosphate (S-1-P) in regulating sensitivity to cisplatin [cis-diamminedichloroplatinum(II)] and showed that modulating the S-1-P lyase can alter cisplatin sensitivity. Here, we show that the members of the sphingosine kinase (SphK1 and SphK2) and dihydroceramide synthase (LASS1/CerS1, LASS4/CerS4, and LASS5/CerS5) enzyme families each have a unique role in regulating sensitivity to cisplatin and other drugs. Thus, expression of SphK1 decreases sensitivity to cisplatin, carboplatin, doxorubicin, and vincristine, whereas expression of SphK2 increases sensitivity. Expression of LASS1/CerS1 increases the sensitivity to all the drugs tested, whereas LASS5/CerS5 only increases sensitivity to doxorubicin and vincristine. LASS4/CerS4 expression has no effect on the sensitivity to any drug tested. Reflecting this, we show that the activation of the p38 mitogen-activated protein (MAP) kinase is increased only by LASS1/CerS1, and not by LASS4/CerS4 or LASS5/CerS5. Cisplatin was shown to cause a specific translocation of LASS1/CerS1, but not LASS4/CerS4 or LASS5/CerS5, from the endoplasmic reticulum (ER) to the Golgi apparatus. Supporting the hypothesis that this translocation is mechanistically involved in the response to cisplatin, we showed that expression of SphK1, but not SphK2, abrogates both the increased cisplatin sensitivity in cells stably expressing LASS1/CerS and the translocation of the LASS1/CerS1. The data suggest that the enzymes of the sphingolipid metabolic pathway can be manipulated to improve sensitivity to the widely used drug cisplatin.

    Topics: Antineoplastic Agents; Blotting, Western; Cell Survival; Ceramides; Cisplatin; Drug Resistance, Neoplasm; Enzyme Activation; Fluorescent Antibody Technique; Golgi Apparatus; Humans; Immunoprecipitation; Lysophospholipids; Membrane Proteins; Oxidoreductases; p38 Mitogen-Activated Protein Kinases; Phosphotransferases (Alcohol Group Acceptor); Sphingosine; Sphingosine N-Acyltransferase

2007