sphingosine-1-phosphate and acetovanillone

sphingosine-1-phosphate has been researched along with acetovanillone* in 2 studies

Other Studies

2 other study(ies) available for sphingosine-1-phosphate and acetovanillone

ArticleYear
Role for peroxynitrite in sphingosine-1-phosphate-induced hyperalgesia in rats.
    Pain, 2011, Volume: 152, Issue:3

    Sphingosine-1-phosphate (S1P) is an important mediator of inflammation recently shown in in vitro studies to increase the excitability of small-diameter sensory neurons, at least in part, via activation of the S1P(1) receptor subtype. Activation of S1PR(1) has been reported to increase the formation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-derived superoxide (O(2)(ยท-)) and nitric oxide synthase (NOS)-derived nitric oxide (NO). This process favors the formation of peroxynitrite (ONOO(-) [PN]), a potent mediator of hyperalgesia associated with peripheral and central sensitization. The aims of our study were to determine whether S1P causes peripheral sensitization and thermal hyperalgesia via S1PR(1) activation and PN formation. Intraplantar injection of S1P in rats led to a time-dependent development of thermal hyperalgesia that was blocked by the S1PR(1) antagonist W146, but not its inactive enantiomer W140. The hyperalgesic effects of S1P were mimicked by intraplantar injection of the well-characterized S1PR(1) agonist SEW2871. The development of S1P-induced hyperalgesia was blocked by apocynin, a NADPH oxidase inhibitor; N(G)-nitro-l-arginine methyl ester, a nonselective NOS inhibitor; and by the potent PN decomposition catalysts (FeTM-4-PyP(5+) and MnTE-2-PyP(5+)). Our findings provide mechanistic insight into the signaling pathways engaged by S1P in the development of hyperalgesia and highlight the contribution of the S1P(1) receptor-to-PN signaling in this process. Sphingosine-1-phosphate (S1P)-induced hyperalgesia is mediated by S1P1 receptor activation and mitigated by inhibition or decomposition of peroxynitrite, providing a target pathway for novel pain management strategies.

    Topics: Acetophenones; Anilides; Animals; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Interactions; Enzyme Activation; Enzyme Inhibitors; Hyperalgesia; Lysophospholipids; Male; Metalloporphyrins; NG-Nitroarginine Methyl Ester; Organophosphonates; Oxadiazoles; Peroxynitrous Acid; Rats; Rats, Sprague-Dawley; Reaction Time; Receptors, Lysosphingolipid; Sphingosine; Thiophenes; Time Factors

2011
Platelets induce reactive oxygen species-dependent growth of human skin fibroblasts.
    European journal of cell biology, 2003, Volume: 82, Issue:11

    A growing amount of evidence suggests that reactive oxygen species (ROS), such as hydrogen peroxide and superoxide anion, regulate intracellular signalling and have a role in cell proliferation. In the present study, we show that platelets increase the mitogenic rate in human fibroblasts and that this effect was inhibited by the intracellular antioxidant N-acetyl-L-cysteine (NAC) and the NADPH-oxidase inhibitor diphenyleneiodonium chloride (DPI). The mitogenic effects of platelets were mimicked by the platelet factors platelet-derived growth factor BB-isoform (PDGF-BB), transforming growth factor beta1 (TGF-beta1) and sphingosine-1-phosphate (S1P). The sphingosine kinase inhibitor DL-threo-dihydrosphingosine (DL-dihydro) abrogated the platelet-induced growth, while antibodies directed against PDGF or TGF-beta had modest effects. Exposure of fibroblasts to platelets, PDGF-BB, TGF-beta1 or S1P caused an extensive intracellular ROS production, measured as changes in dichlorofluorescein fluorescence. This ROS production was totally inhibited by NAC, pyrrolidinethiocarbamate (PDTC), DPI and apocynin. In conclusion, the results presented are indicative of a crucial role of ROS in the platelet-mediated regulation of fibroblast proliferation.

    Topics: Acetophenones; Acetylcysteine; Becaplermin; Blood Platelets; Cell Division; Cells, Cultured; Enzyme Inhibitors; Fibroblasts; Fluoresceins; Humans; Lysophospholipids; NADPH Oxidases; Onium Compounds; Platelet-Derived Growth Factor; Proto-Oncogene Proteins c-sis; Reactive Oxygen Species; Skin; Sphingosine; Thiocarbamates; Transforming Growth Factor beta; Transforming Growth Factor beta1

2003