spheroidenone has been researched along with neurosporene* in 5 studies
5 other study(ies) available for spheroidenone and neurosporene
Article | Year |
---|---|
Picosecond Dynamical Response to a Pressure-Induced Break of the Tertiary Structure Hydrogen Bonds in a Membrane Chromoprotein.
We used elastic incoherent neutron scattering (EINS) to find out if structural changes accompanying local hydrogen bond rupture are also reflected in global dynamical response of the protein complex. Chromatophore membranes from LH2-only strains of the photosynthetic bacterium Rhodobacter sphaeroides, with spheroidenone or neurosporene as the major carotenoids, were subjected to high hydrostatic pressure at ambient temperature. Optical spectroscopy conducted at high pressure confirmed rupture of tertiary structure hydrogen bonds. In parallel, we used EINS to follow average motions of the hydrogen atoms in LH2, which reflect the flexibility of this complex. A decrease of the average atomic mean square displacements of hydrogen atoms was observed up to a pressure of 5 kbar in both carotenoid samples due to general stiffening of protein structures, while at higher pressures a slight increase of the displacements was detected in the neurosporene mutant LH2 sample only. These data show a correlation between the local pressure-induced breakage of H-bonds, observed in optical spectra, with the altered protein dynamics monitored by EINS. The slightly higher compressibility of the neurosporene mutant sample shows that even subtle alterations of carotenoids are manifested on a larger scale and emphasize a close connection between the local structure and global dynamics of this membrane protein complex. Topics: Bacteriochlorophylls; Carotenoids; Hydrogen Bonding; Hydrostatic Pressure; Light-Harvesting Protein Complexes; Rhodobacter sphaeroides | 2019 |
Carotenoid radical formation: dependence on conjugation length.
The relative energy of carotenoid neutral radicals formed by proton loss from the radical cations of linear carotenoids has been examined as a function of conjugation length from n = 15 to 9. For a maximum conjugation length of n = 15 (bisdehydrolycopene, a symmetrical compound), proton loss can occur from any of the 10 methyl groups, with proton loss from the methyl group at position C1 or C1' being the most favorable. In contrast, the most energetically favorable proton loss from the radical cations of lycopene, neurosporene, spheroidene, spheroidenone, spirilloxanthin, and anhydrorhodovibrin occurs from methylene groups that extend from the conjugated system. For example, decreasing the conjugation length to n = 11 (lycopene) by saturation of the double bonds C3-C4 and at C3'-C4' of bisdehydrolycopene favors proton loss at C4 or C4' methylene groups. Saturation at C7'-C8' in the case of neurosporene, spheroidene, and spheroidenone (n = 9, 10, 11) favors the formation of a neutral radical at the C8' methylene group. Saturation of C1-C2 by addition of a methoxy group to a bisdehydrolycopene-like structure with conjugation of n = 12 or 13 (anhydrorhodovibrin, spirilloxanthin) favors proton loss at the C2 methylene group. As a consequence of deprotonation of the radical cation, the unpaired electron spin distribution changes so that larger β-methyl proton couplings occur for the neutral radicals (13-16 MHz) than for the radical cation (7-10 MHz), providing a means to identify possible carotenoid radicals in biological systems by Mims ENDOR. Topics: Carotenoids; Electron Spin Resonance Spectroscopy; Free Radicals; Lycopene; Protons; Thermodynamics; Xanthophylls | 2011 |
Ultrafast time-resolved carotenoid to-bacteriochlorophyll energy transfer in LH2 complexes from photosynthetic bacteria.
Steady-state and ultrafast time-resolved optical spectroscopic investigations have been carried out at 293 and 10 K on LH2 pigment-protein complexes isolated from three different strains of photosynthetic bacteria: Rhodobacter (Rb.) sphaeroides G1C, Rb. sphaeroides 2.4.1 (anaerobically and aerobically grown), and Rps. acidophila 10050. The LH2 complexes obtained from these strains contain the carotenoids, neurosporene, spheroidene, spheroidenone, and rhodopin glucoside, respectively. These molecules have a systematically increasing number of pi-electron conjugated carbon-carbon double bonds. Steady-state absorption and fluorescence excitation experiments have revealed that the total efficiency of energy transfer from the carotenoids to bacteriochlorophyll is independent of temperature and nearly constant at approximately 90% for the LH2 complexes containing neurosporene, spheroidene, spheroidenone, but drops to approximately 53% for the complex containing rhodopin glucoside. Ultrafast transient absorption spectra in the near-infrared (NIR) region of the purified carotenoids in solution have revealed the energies of the S1 (2(1)Ag-)-->S2 (1(1)Bu+) excited-state transitions which, when subtracted from the energies of the S0 (1(1)Ag-)-->S2 (1(1)Bu+) transitions determined by steady-state absorption measurements, give precise values for the positions of the S1 (2(1)Ag-) states of the carotenoids. Global fitting of the ultrafast spectral and temporal data sets have revealed the dynamics of the pathways of de-excitation of the carotenoid excited states. The pathways include energy transfer to bacteriochlorophyll, population of the so-called S* state of the carotenoids, and formation of carotenoid radical cations (Car*+). The investigation has found that excitation energy transfer to bacteriochlorophyll is partitioned through the S1 (1(1)Ag-), S2 (1(1)Bu+), and S* states of the different carotenoids to varying degrees. This is understood through a consideration of the energies of the states and the spectral profiles of the molecules. A significant finding is that, due to the low S1 (2(1)Ag-) energy of rhodopin glucoside, energy transfer from this state to the bacteriochlorophylls is significantly less probable compared to the other complexes. This work resolves a long-standing question regarding the cause of the precipitous drop in energy transfer efficiency when the extent of pi-electron conjugation of the carotenoid is extended from ten to eleven conjugated ca Topics: Algorithms; Bacterial Proteins; Bacteriochlorophylls; Carotenoids; Cold Temperature; Energy Transfer; Kinetics; Light-Harvesting Protein Complexes; Models, Molecular; Rhodobacter sphaeroides; Rhodopseudomonas; Spectrometry, Fluorescence; Spectrophotometry; Spectroscopy, Near-Infrared; Temperature; Time Factors | 2008 |
Carotenoid radical cation formation in LH2 of purple bacteria: a quantum chemical study.
In LH2 complexes of Rhodobacter sphaeroides the formation of a carotenoid radical cation has recently been observed upon photoexcitation of the carotenoid S2 state. To shed more light onto the yet unknown molecular mechanism leading to carotenoid radical formation in LH2, the interactions between carotenoid and bacteriochlorophyll in LH2 are investigated by means of quantum chemical calculations for three different carotenoids--neurosporene, spheroidene, and spheroidenone--using time-dependent density functional theory. Crossings of the calculated potential energy curve of the electron transfer state with the bacteriochlorophyll Qx state and the carotenoid S1 and S2 states occur along an intermolecular distance coordinate for neurosporene and spheroidene, but for spheroidenone no crossing of the electron transfer state with the carotenoid S1 state could be found. By comparison with recent experiments where no formation of a spheroidenone radical cation has been observed, a molecular mechanism for carotenoid radical cation formation is proposed in which it is formed via a vibrationally excited carotenoid S1 or S*state. Arguments are given why the formation of the carotenoid radical cation does not proceed via the Qx, S2, or higher excited electron transfer states. Topics: Algorithms; Bacterial Proteins; Bacteriochlorophylls; Carotenoids; Cations; Electron Transport; Energy Transfer; Free Radicals; Light; Light-Harvesting Protein Complexes; Protein Conformation; Proteobacteria; Quantum Theory; Rhodobacter sphaeroides; Time Factors | 2006 |
Photo-oxidative stress in Rhodobacter sphaeroides: protective role of carotenoids and expression of selected genes.
In Rhodobacter sphaeroides, carotenoids are essential constituents of the photosynthetic apparatus and are assumed to prevent the formation of singlet oxygen by quenching of triplet bacteriochlorophyll a (BChl a) in vivo. It was shown that small amounts of singlet oxygen are generated in vivo by incubation of R. sphaeroides under high light conditions. However, growth and survival rates were not affected. Higher amounts of singlet oxygen were generated by BChl a in a carotenoid-deficient strain and led to a decrease in growth and survival rates. The data support earlier results on the pivotal role of carotenoids in the defence against stress caused by singlet oxygen. Results obtained under photo-oxidative stress conditions with strains impaired in carotenoid synthesis suggest that sphaeroidene and neurosporene provide less protection against methylene-blue-generated singlet oxygen than sphaeroidenone in vivo. Despite their protective function against singlet oxygen, relative amounts of carotenoids did not accumulate in R. sphaeroides wild-type cultures under photo-oxidative stress, and relative mRNA levels of phytoene dehydrogenase and sphaeroidene monooxygenase did not increase. In contrast, singlet oxygen specifically induced the expression of glutathione peroxidase and a putative Zn-dependent hydrolase, but mRNA levels of hydrogen-peroxide-degrading catalase E were not significantly affected by photo-oxidative stress. Based on these results, it is suggested that singlet oxygen acts as a specific signal for gene expression in R. sphaeroides. Presumably transcriptional regulators exist to specifically induce the expression of genes involved in the response to stress caused by singlet oxygen. Topics: Adaptation, Physiological; Carotenoids; Catalase; Gene Expression Regulation, Bacterial; Glutathione Peroxidase; Hydrolases; Oxidative Stress; Oxidoreductases; Reverse Transcriptase Polymerase Chain Reaction; Rhodobacter sphaeroides; RNA, Bacterial; RNA, Messenger; Singlet Oxygen; Transcription, Genetic | 2005 |