spheroidene has been researched along with rhodovibrin* in 2 studies
2 other study(ies) available for spheroidene and rhodovibrin
Article | Year |
---|---|
Effect of Illumination Intensity and Inhibition of Carotenoid Biosynthesis on Assembly of Peripheral Light-Gathering Complexes in Purple Sulfur Bacteria C Allochromatium vinosum ATCC 17899.
Effect of illumination intensity and inhibition of carotenoid biosynthesis on assemblage of different spectral types of LH2 complexes in a purple sulfur bacterium Allochromatium (Alc.) vinosum ATCC 17899 was studied. Under illumination of 1200 and 500 lx, the complexes B800-850 and B800-840 and B800-820 were assembled. While rhodopine was the major carotenoid in all spectral types of the LH2 complex, a certain- increase in the content of carotenoids with higher numbers of conjugated double bonds (anhydrorhodovibrin and didehydrorhodovibrin) was observed in the B800-820 complex. At 1200 lx, the cells grew slowly at diphe- nylamine (DPA) concentrations not exceeding 53 .iM, while at illumination intensity decreased to 500 Ix they could grow at 71 jiM DPA (DPA cells). Independent on illumination level, the inhibitor is supposed to impair the functioning of phytoine synthetase (resulting in a decrease in the total carotenoid content) and of phyto- ine desturase, which results in formation of neurosporene hydroxy derivatives and ;-carotene. In the cells grown at 500 lx, small amounts of spheroidene and.OH-spheroidene were detected. These carotenoids were originally found under conditions of carotenoid synthesis inhibition in bacteria with spirilloxanthin as the major carotenoid. Carotenoid content in the LH2 complexes isolated from the DPA cells was -15% of the control (without inhibition) for the B800-850 and -20%of the control for the B800-820 and B800-840 DPA complexes. Compared to the DPA pigment-containing membranes, the DPA complexes were enriched with -carotenoids due to- disintegration of some carotenoid-free complexes in the course of isolation. These results support the supposition that some of the B800-820, B800-840, and B800-850 complexes may be Assembled in the cells of Alc. vinosum ATCC 17899 without carotenoids. Comparison of the characteristics obtained for Alc. vinosum ATCC 17899 and the literature data on strain D of the same bacteria shows that they belong to two different strains, rather than to one as was previously supposed. Topics: Bacterial Proteins; Carotenoids; Chromatiaceae; Culture Media; Diphenylamine; Dose-Response Relationship, Radiation; Gene Expression; Ligases; Light; Light-Harvesting Protein Complexes; Mixed Function Oxygenases; Xanthophylls; zeta Carotene | 2016 |
Ultrafast dynamics and excited state spectra of open-chain carotenoids at room and low temperatures.
Many of the spectroscopic features and photophysical properties of carotenoids are explained using a three-state model in which the strong visible absorption of the molecules is associated with an S0 (1(1)Ag-) --> S2 (1(1)Bu+) transition, and the lowest lying singlet state, S1 (2(1)Ag-), is a state into which absorption from the ground state is forbidden by symmetry. However, semiempirical and ab initio quantum calculations have suggested additional excited singlet states may lie either between or in the vicinity of S1 (2(1)Ag-) and S2 (1(1)Bu+), and some ultrafast spectroscopic studies have reported evidence for these states. One such state, denoted S*, has been implicated as an intermediate in the depopulation of S2 (1(1)Bu+) and as a pathway for the formation of carotenoid triplet states in light-harvesting complexes. In this work, we present the results of an ultrafast, time-resolved spectroscopic investigation of a series of open-chain carotenoids derived from photosynthetic bacteria and systematically increasing in their number of pi-electron carbon-carbon double bonds (n). The molecules are neurosporene (n = 9), spheroidene (n = 10), rhodopin glucoside (n = 11), rhodovibrin (n = 12), and spirilloxanthin (n = 13). The molecules were studied in acetone and CS2 solvents at room temperature. These experiments explore the effect of solvent polarity and polarizability on the spectroscopic and kinetic behavior of the molecules. The molecules were also studied in ether/isopentane/ethanol (EPA) glasses at 77 K, in which the spectral resolution is greatly enhanced. Analysis of the data using global fitting techniques has revealed the ultrafast dynamics of the excited states and spectral changes associated with their decay, including spectroscopic features not previously reported. The data are consistent with S* being identified with a twisted conformational structure, the yield of which is increased in molecules having longer pi-electron conjugations. In particular, for the longest molecule in the series, spirilloxanthin, the experiments and a detailed quantum computational analysis reveal the presence of two S* states associated with relaxed S1 (2(1)Ag-) conformations involving nearly planar 6-s-cis and 6-s-trans geometries. We propose that in polar solvents, the ground state of spirilloxanthin takes on a corkscrew conformation that generates a net solute dipole moment while decreasing the cavity formation energy. Upon excitation and relaxation into the S1 Topics: Carotenoids; Glucosides; Kinetics; Models, Chemical; Molecular Structure; Quantum Theory; Rhodobacter sphaeroides; Rhodopseudomonas; Sensitivity and Specificity; Spectrum Analysis; Temperature; Vibration; Xanthophylls | 2007 |