sorbitan-monooleate and maltodextrin

sorbitan-monooleate has been researched along with maltodextrin* in 2 studies

Other Studies

2 other study(ies) available for sorbitan-monooleate and maltodextrin

ArticleYear
Provesicular granisetron hydrochloride buccal formulations: in vitro evaluation and preliminary investigation of in vivo performance.
    European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences, 2014, Aug-18, Volume: 60

    Granisetron hydrochloride (granisetron) is a potent antiemetic that has been proven to be effective in acute and delayed emesis in cancer chemotherapy. Granisetron suffers from reduced oral bioavailability (≈60%) due to hepatic metabolism. In this study the combined advantage of provesicular carriers and buccal drug delivery has been explored aiming to sustain effect and improve bioavailability of granisetron via development of granisetron provesicular buccoadhesive tablets with suitable quality characteristics (hardness, drug content, in vitro release pattern, exvivo bioadhesion and in vivo bioadhesion behavior). Composition of the reconstituted niosomes from different prepared provesicular carriers regarding type of surfactant used and cholesterol concentration significantly affected both entrapment efficiency (%EE) and vesicle size. Span 80 proniosome-derived niosomes exhibited higher encapsulation efficiency and smaller particle size than those derived from span 20. Also, the effect of %EE and bioadhesive polymer type on in vitro drug release and in vivo performance of buccoadhesive tablets was investigated. Based on achievement of required in vitro release pattern (20-30% at 2h, 40-65% at 6h and 80-95% at 12h), in vivo swelling behavior, and in vivo adhesion time (>14 h) granisetron formulation (F19, 1.4 mg) comprising HPMC:carbopol 974P (7:3) and maltodextrin coated with the vesicular precursors span 80 and cholesterol (9:1) was chosen for in vivo study. In vivo pharmacokinetic study revealed higher bioavailability of buccal formulation relative to conventional oral formulation of granisetron (AUC0-∞ is 89.97 and 38.18 ng h/ml for buccal and oral formulation, respectively). A significantly lower and delayed Cmax (12.09±4.47 ng/ml, at 8h) was observed after buccal application compared to conventional oral tablet (31.66±10.15 ng/ml, at 0.5 h). The prepared provesicular buccoadhesive tablet of granisetron (F19) might help bypass hepatic first-pass metabolism and improve bioavailability of granisetron with the possibility of reducing reported daily dose (2mg) and reducing dosing frequency.

    Topics: Adhesiveness; Administration, Buccal; Adult; Animals; Antiemetics; Biological Availability; Chemistry, Pharmaceutical; Chickens; Cholesterol; Granisetron; Hardness; Hexoses; Humans; In Vitro Techniques; Male; Mouth Mucosa; Polysaccharides; Rabbits; Tablets

2014
Fast dissolving films made of maltodextrins.
    European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V, 2008, Volume: 70, Issue:3

    This work aimed to study maltodextrins (MDX) with a low dextrose equivalent as film forming material and their application in the design of oral fast-dissolving films. The suitable plasticizer and its concentration were selected on the basis of flexibility, tensile strength and stickiness of MDX films, and the MDX/plasticizer interactions were investigated by ATR-FTIR spectroscopy. Flexible films were obtained by using 16-20% w/w glycerin (GLY). This basic formulation was adapted to the main production technologies, casting and solvent evaporation (Series C) or hot-melt extrusion (Series E), by adding sorbitan monoleate (SO) or cellulose microcrystalline (MCC), respectively. MCC decreased the film ductility and significantly affected the film disintegration time both in vitro and in vivo (Series C<10s; Series E approximately 1min). To assess the film loading capacity, piroxicam (PRX), a water insoluble drug, was selected. The loading of a drug as a powder decreased the film ductility, but the formulation maintained satisfactory flexibility and resistance to elongation for production and packaging procedures. The films present a high loading capacity, up to 25mg for a surface of 6cm(2). The PRX dissolution rate significantly improved in Series C films independently of the PRX/MDX ratio.

    Topics: Adhesiveness; Anti-Inflammatory Agents, Non-Steroidal; Cellulose; Chemistry, Pharmaceutical; Dosage Forms; Drug Carriers; Drug Compounding; Glycerol; Hexoses; Kinetics; Piroxicam; Plasticizers; Pliability; Polysaccharides; Solubility; Technology, Pharmaceutical; Tensile Strength

2008