sorbinil and pentosidine

sorbinil has been researched along with pentosidine* in 3 studies

Other Studies

3 other study(ies) available for sorbinil and pentosidine

ArticleYear
Effect of treating streptozotocin-induced diabetic rats with sorbinil, myo-inositol or aminoguanidine on endoneurial blood flow, motor nerve conduction velocity and vascular function of epineurial arterioles of the sciatic nerve.
    International journal of experimental diabetes research, 2002, Volume: 3, Issue:1

    Previously we have demonstrated that diabetes causes impairment in vascular function of epineurial vessels, which precedes the slowing of motor nerve conduction velocity. Treatment of diabetic rats with aldose reductase inhibitors, aminoguanidine or myo-inositol supplementation have been shown to improve motor nerve conduction velocity and/or decreased endoneurial blood flow. However, the effect these treatments have on vascular reactivity of epineurial vessels of the sciatic nerve is unknown. In these studies we examined the effect of treating streptozotocin-induced rats with sorbinil, aminoguanidine or myo-inositol on motor nerve conduction velocity, endoneurial blood flow and endothelium-dependent vascular relaxation of arterioles that provide circulation to the region of the sciatic nerve. Treating diabetic rats with sorbinil, aminoguanidine or myo-inositol improved the reduction of endoneurial blood flow and motor nerve conduction velocity. However, only sorbinil treatment significantly improved the diabetes-induced impairment of acetylcholine-mediated vasodilation of epineurial vessels of the sciatic nerve. All three treatments were efficacious in preventing the appropriate metabolic derangements associated with either activation of the polyol pathway or increased nonenzymatic glycation. In addition, sorbinil was shown to prevent the diabetes-induced decrease in lens glutathione level. However, other markers of oxidative stress were not vividly improved by these treatments. These studies suggest that sorbinil treatment may be more effective in preventing neural dysfunction in diabetes than either aminoguanidine or myo-inositol.

    Topics: Aldehyde Reductase; Animals; Arginine; Arterioles; Diabetes Mellitus, Experimental; Enzyme Inhibitors; Guanidines; Imidazoles; Imidazolidines; Inositol; Lysine; Male; Neural Conduction; Rats; Rats, Sprague-Dawley; Retina; Sciatic Nerve; Sodium-Potassium-Exchanging ATPase; Superoxides

2002
Suppression of pentosidine formation in galactosemic rat lens by an inhibitor of aldose reductase.
    Diabetes, 1994, Volume: 43, Issue:4

    Recent work from our laboratory revealed a correlation between the degree of protein pigmentation in human cataractous lens and the advanced Maillard reaction as reflected by pentosidine formation. Although the data suggested a role for ascorbate in pentosidine formation in senile cataractous lenses, elevated pentosidine levels in diabetic cataracts suggested that glucosylation may be involved directly in pentosidine biosynthesis. To clarify this issue, we quantified pentosidine in lenses from rats with experimental galactosemia with and without aldose reductase inhibitor treatment. At 12 months, pentosidine-like fluorescence (335/385 nm) was three to six times higher (P < 0.0001) in water soluble and insoluble crystallins of galactosemic compared with nongalactosemic rats. Actual pentosidine levels increased shortly after onset of galactosemia. Contents in water-insoluble crystallins were 6.32 +/- 2.2 and 1.40 +/- 0.66 pmol/mg protein in galactosemic and control lenses, respectively (P < 0.001). Fluorescence and pentosidine were suppressed to almost control levels upon treatment with sorbinil. Incubation experiments showed that pentosidine could form slowly from galactose, but much more rapidly from ascorbate and its oxidation products. Its formation could be inhibited partly by both reduced and oxidized glutathione or epsilon-aminocaproic acid. The requirement of oxygen for pentosidine formation suggests that oxidative stress associated with glutathione depletion and ascorbate oxidation are plausible mechanisms for rapid pentosidine formation upon onset of galactosemia. In contrast, Maillard reaction by glycoxidation products may account for the sustained increase in pentosidine. Both these events may be linked to the newly recognized pseudohypoxic state of cells exposed to high sugar concentrations.

    Topics: Aldehyde Reductase; Animals; Arginine; Ascorbic Acid; Diet; Female; Galactitol; Galactose; Galactosemias; Glutathione; Imidazoles; Imidazolidines; Lens, Crystalline; Lysine; Maillard Reaction; Rats; Rats, Sprague-Dawley; Time Factors

1994
Tissue-specific effects of aldose reductase inhibition on fluorescence and cross-linking of extracellular matrix in chronic galactosemia. Relationship to pentosidine cross-links.
    Diabetes, 1991, Volume: 40, Issue:8

    Chronic experimental hyperglycemia mediated by galactose has been shown to induce browning and cross-linking of rat tail tendon collagen that could be duplicated in vitro by nonenzymatic galactosylation. To investigate the nature of these changes, Sprague-Dawley rats were placed on a 33% galactose diet without and with sorbinil for 6 and 12 mo. Collagen-linked fluorescence and pentosidine cross-links increased with age and galactosemia in tail tendons (P less than 0.001) and skin but were essentially unresponsive to aldose reductase inhibition (ARI). In contrast, tendon breaking time in urea, a likely parameter of cross-linking, was markedly improved (P less than 0.001) by ARI. Fluorescence that was inhibited by sorbinil treatment was increased in pepsin and proteinase K digest of aortic tissue from galactosemic rats (P less than 0.001), but impaired enzymatic digestibility was not observed. Systolic blood pressure as potential consequence of aortic stiffening was not increased in galactosemia. These data suggest that fluorescence in skin and tendon might be in part due to advanced glycosylation and pentosidine formation because these were not decreased by ARI. However, they also suggest that nonfluorescent cross-links may also be forming because, in contrast to fluorescence, tail tendon breaking time was partly corrected by ARI. Thus, it appears that extracellular matrix changes in chronic galactosemia are complex, being partly attributable to advanced glycosylation and partly to polyol-pathway activation.

    Topics: Aldehyde Reductase; Animals; Arginine; Body Weight; Collagen; Extracellular Matrix; Galactosemias; Glycated Hemoglobin; Imidazoles; Imidazolidines; Lysine; Male; Rats; Rats, Inbred Strains; Reference Values; Spectrometry, Fluorescence; Tendons

1991