sorafenib has been researched along with thiazoles in 36 studies
Studies (sorafenib) | Trials (sorafenib) | Recent Studies (post-2010) (sorafenib) | Studies (thiazoles) | Trials (thiazoles) | Recent Studies (post-2010) (thiazoles) |
---|---|---|---|---|---|
6,520 | 730 | 5,251 | 33,179 | 2,100 | 12,330 |
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 10 (27.78) | 29.6817 |
2010's | 24 (66.67) | 24.3611 |
2020's | 2 (5.56) | 2.80 |
Authors | Studies |
---|---|
Curtiss, FR | 1 |
Arnold, R; Bartsch, DK; Fendrich, V; Hörsch, D; Karhoff, D; Sauer, S; Schrader, J | 1 |
Agaram, NP; Antonescu, CR; Besmer, P; Clarkson, BD; D'Adamo, D; DeMatteo, RP; Guo, T; Hom, G; Maki, RG; Schwartz, GK; Singer, S; Veach, D; Wong, GC | 1 |
Thomas, X | 1 |
Faivre, S; Le Tourneau, C; Raymond, E | 1 |
Bui, B; Italiano, A | 1 |
Dykens, JA; Hirakawa, B; Hynes, J; Jamieson, J; Jessen, BA; Marroquin, LD; Nadanaciva, S; Patyna, S; Will, Y | 1 |
Clynes, M; Crown, J; Eustace, AJ; O'Donovan, N | 1 |
Decosterd, LA; Duchosal, MA; Haouala, A; Leyvraz, S; Montemurro, M; Ris, HB; Rochat, B; Widmer, N; Zaman, K; Zanolari, B | 1 |
Gelderblom, H; Guchelaar, HJ; van Erp, NP | 1 |
Bonvalot, S; Cioffi, A; Dômont, J; Le Cesne, A; Tardieu, M | 1 |
Agostino, NM; Chinchilli, VM; Drabick, JJ; Gingrich, R; Koszyk-Szewczyk, A; Lynch, CJ; Sivik, J | 1 |
Geoerger, B; Leblond, P | 1 |
Blay, JY; Chaigneau, L; Curtit, E; Dobi, E; Kalbacher, E; Mansi, L; Nguyen, T; Pivot, X; Viel, E | 1 |
Akita, K; Fujii, I; Gouda, M; Ishihama, Y; Kirii, Y; Kitagawa, D; Narumi, Y; Sugiyama, N; Yokota, K | 1 |
El-Gamal, MI; Lee, YS; Oh, CH; Park, JH | 1 |
Armeanu-Ebinger, S; Dewerth, A; Eicher, C; Fuchs, J; Kirchner, B; Warmann, SW | 1 |
Corey, SJ; Park, BJ; Whichard, ZL | 1 |
Celeghini, C; Melloni, E; Norcio, A; Secchiero, P; Voltan, R; Zauli, G | 1 |
Claasen, J; Frenzel, LP; Gehrke, I; Hallek, M; Krause, G; Kuckertz, M; Patz, M; Veldurthy, A; Wendtner, CM | 1 |
Balakrishnar, B; Clements, A; Gao, B; Gurney, H; Wong, M; Yeap, S | 1 |
Chang, AY; Wang, M | 1 |
Albizua, E; Arenas, A; Ayala, R; Barrio, S; Burgaleta, C; Gallardo, M; Gilsanz, F; Jiménez-Ubieto, A; Martinez-Lopez, J; Rapado, I; Rueda, D | 1 |
Andriamanana, I; Duretz, B; Gana, I; Hulin, A | 1 |
Robert, C; Sibaud, V | 1 |
Beijnen, JH; de Vries, N; Schinkel, AH; Sparidans, RW; Tang, SC; Wagenaar, E | 1 |
Bergot, E; Godinas, L; Guignabert, C; Humbert, M; Montani, D; Perros, F; Seferian, A; Sibille, Y | 1 |
Bartz-Schmidt, KU; Bayyoud, T; Hofmann, J; Spitzer, M; Yoeruek, E | 1 |
Fan, L; Han, TT; Li, JY; Xu, W | 1 |
Beaune, P; de Waziers, I; Favre, A; Figg, WD; Kiehl, P; McMullen, J; Montemurro, M; Narjoz, C; Rochat, B | 1 |
Galanis, A; Levis, M | 1 |
Guo, WH; Lu, J; Wang, XZ; Zhang, JX; Zheng, JF | 1 |
Dong, X; Li, J; Li, T; Liu, F; Wang, F; Wang, X; Wang, Y; Wei, H; Xiu, P; Xu, Z; Zhong, J | 1 |
Abdel-Maksoud, MS; Ammar, UM; Oh, CH | 1 |
Anbar, HS; El-Gamal, MI; Jeon, HR; Kwon, D; Lee, BS; Oh, CH; Tarazi, H | 1 |
Andersson, C; Blom, K; Brechot, C; Ek, F; Fryknäs, M; Jarvius, M; Larsson, R; Nygren, P; Rudfeldt, J; Selvin, T; Senkowski, W | 1 |
10 review(s) available for sorafenib and thiazoles
Article | Year |
---|---|
[Acute lymphoblastic leukemia with Philadelphia chromosome: treatment with kinase inhibitors].
Topics: Alkyl and Aryl Transferases; Antineoplastic Agents; Benzamides; Benzenesulfonates; Dasatinib; Drug Resistance, Neoplasm; Fusion Proteins, bcr-abl; Humans; Imatinib Mesylate; Indoles; Niacinamide; Phenylurea Compounds; Piperazines; Precursor Cell Lymphoblastic Leukemia-Lymphoma; Protein Kinase Inhibitors; Pyridines; Pyrimidines; Pyrroles; Sorafenib; Sunitinib; Thiazoles | 2007 |
New developments in multitargeted therapy for patients with solid tumours.
Topics: Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Benzamides; Benzenesulfonates; Clinical Trials as Topic; Dasatinib; Drug Delivery Systems; Humans; Imatinib Mesylate; Indoles; Neoplasms; Niacinamide; Phenylurea Compounds; Piperazines; Pyridines; Pyrimidines; Pyrroles; Sorafenib; Sunitinib; Thiazoles | 2008 |
[Gastrointestinal stromal tumors: molecular aspects and therapeutic implications].
Topics: Antineoplastic Agents; Benzamides; Benzenesulfonates; Disease Progression; Drug Resistance, Neoplasm; Gastrointestinal Stromal Tumors; Humans; Imatinib Mesylate; Indoles; Mutation; Neoplasm Proteins; Niacinamide; Oligonucleotides; Phenylurea Compounds; Phthalazines; Piperazines; Piperidines; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-kit; Pyridines; Pyrimidines; Pyrroles; Receptor, Platelet-Derived Growth Factor alpha; Sorafenib; Staurosporine; Sunitinib; Thiazoles | 2008 |
Clinical pharmacokinetics of tyrosine kinase inhibitors.
Topics: Administration, Oral; Antineoplastic Agents; Benzamides; Benzenesulfonates; Biological Availability; Cytochrome P-450 Enzyme System; Dasatinib; Drug Interactions; Erlotinib Hydrochloride; Gefitinib; Humans; Imatinib Mesylate; Indoles; Intestinal Absorption; Lapatinib; Niacinamide; Phenylurea Compounds; Piperazines; Protein Kinase Inhibitors; Protein-Tyrosine Kinases; Pyridines; Pyrimidines; Pyrroles; Quinazolines; Sorafenib; Sunitinib; Thiazoles; Tissue Distribution | 2009 |
[Focus on GIST management].
Topics: Antineoplastic Agents; Benzamides; Benzenesulfonates; Chemotherapy, Adjuvant; Drug Resistance, Neoplasm; Gastrointestinal Stromal Tumors; Humans; Imatinib Mesylate; Indoles; Niacinamide; Phenylurea Compounds; Piperazines; Piperidines; Protein Kinase Inhibitors; Pyridines; Pyrimidines; Pyrroles; Sorafenib; Sunitinib; Thiazoles | 2010 |
[Indications and current development of new targeted therapies in pediatric oncology].
Topics: Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Antineoplastic Agents; Benzamides; Benzenesulfonates; Bevacizumab; Child; Dasatinib; Erlotinib Hydrochloride; Hedgehog Proteins; Humans; Imatinib Mesylate; Indoles; Integrins; Molecular Targeted Therapy; Neoplasms; Niacinamide; Nifurtimox; Phenylurea Compounds; Piperazines; Protein Kinase Inhibitors; Protein-Tyrosine Kinases; Pyridines; Pyrimidines; Pyrroles; Quinazolines; Sorafenib; Sunitinib; Thiazoles; TOR Serine-Threonine Kinases | 2011 |
Evidence for therapeutic drug monitoring of targeted anticancer therapies.
Topics: Animals; Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Antibodies, Monoclonal, Murine-Derived; Antineoplastic Agents; Area Under Curve; Benzamides; Benzenesulfonates; Cetuximab; Dasatinib; Drug Monitoring; Everolimus; Evidence-Based Medicine; Half-Life; Humans; Imatinib Mesylate; Indoles; Injections, Intravenous; Molecular Targeted Therapy; Neoplasms; Niacinamide; Phenylurea Compounds; Piperazines; Pyridines; Pyrimidines; Pyrroles; Rituximab; Sirolimus; Sorafenib; Sunitinib; Thiazoles | 2012 |
[Pigmentary disorders induced by anticancer agents. Part II: targeted therapies].
Topics: Antibodies, Monoclonal; Antibodies, Monoclonal, Humanized; Antineoplastic Agents; Benzamides; Cetuximab; Dasatinib; ErbB Receptors; Humans; Imatinib Mesylate; Indazoles; Indoles; Ipilimumab; Niacinamide; Phenylurea Compounds; Pigmentation Disorders; Piperazines; Piperidines; Programmed Cell Death 1 Receptor; Protein Kinase Inhibitors; Pyrimidines; Pyrroles; Quinazolines; Receptors, Vascular Endothelial Growth Factor; Sorafenib; Sulfonamides; Sunitinib; Thiazoles | 2013 |
Tyrosine kinase inhibitors in pulmonary arterial hypertension: a double-edge sword?
Topics: Apoptosis; Benzamides; Cell Proliferation; Dasatinib; Endothelial Cells; ErbB Receptors; Familial Primary Pulmonary Hypertension; Fibroblast Growth Factor 2; Fibroblasts; Humans; Hypertension, Pulmonary; Imatinib Mesylate; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; Niacinamide; Phenylurea Compounds; Piperazines; Platelet-Derived Growth Factor; Protein Kinase Inhibitors; Protein-Tyrosine Kinases; Proto-Oncogene Proteins c-kit; Pulmonary Circulation; Pyrimidines; Receptor Protein-Tyrosine Kinases; Sorafenib; src-Family Kinases; Thiazoles; Treatment Outcome; Vascular Endothelial Growth Factor A | 2013 |
Role of chemokines and their receptors in chronic lymphocytic leukemia: function in microenvironment and targeted therapy.
Topics: Aminopyridines; Antineoplastic Agents; Benzylamines; Chemokine CXCL12; Clinical Trials as Topic; Cyclams; Dasatinib; Heterocyclic Compounds; Humans; Lenalidomide; Leukemia, Lymphocytic, Chronic, B-Cell; Molecular Targeted Therapy; Morpholines; Niacinamide; Oxazines; Phenylurea Compounds; Protein Kinase Inhibitors; Purines; Pyridines; Pyrimidines; Quinazolinones; Receptors, CXCR4; Sorafenib; Thalidomide; Thiazoles; Tumor Microenvironment | 2014 |
26 other study(ies) available for sorafenib and thiazoles
Article | Year |
---|---|
Pharmacy benefit spending on oral chemotherapy drugs.
Topics: Administration, Oral; Ambulatory Care; Antineoplastic Agents; Benzamides; Benzenesulfonates; Capecitabine; Dasatinib; Deoxycytidine; Drug Costs; Employer Health Costs; Erlotinib Hydrochloride; Fluorouracil; Gefitinib; Health Benefit Plans, Employee; Humans; Imatinib Mesylate; Indoles; Insurance, Pharmaceutical Services; Lenalidomide; Neoplasms; Niacinamide; Phenylurea Compounds; Piperazines; Prescription Fees; Pyridines; Pyrimidines; Pyrroles; Quinazolines; Sorafenib; Sunitinib; Thalidomide; Thiazoles; United States | 2006 |
Rap1/B-Raf signaling is activated in neuroendocrine tumors of the digestive tract and Raf kinase inhibition constitutes a putative therapeutic target.
Topics: Benzenesulfonates; Digestive System Neoplasms; Dose-Response Relationship, Drug; Enzyme Activation; Enzyme Inhibitors; Gene Expression Regulation, Neoplastic; Humans; Immunohistochemistry; Neuroendocrine Tumors; Niacinamide; Phenylurea Compounds; Proto-Oncogene Proteins B-raf; Pyridines; raf Kinases; rap1 GTP-Binding Proteins; Signal Transduction; Sorafenib; Tetrazolium Salts; Thiazoles | 2007 |
Sorafenib inhibits the imatinib-resistant KITT670I gatekeeper mutation in gastrointestinal stromal tumor.
Topics: Animals; Antineoplastic Agents; Apoptosis; Benzamides; Benzenesulfonates; Cell Proliferation; Dasatinib; Drug Resistance, Neoplasm; Gastrointestinal Stromal Tumors; Humans; Imatinib Mesylate; Mice; Mutation; Niacinamide; Phenylurea Compounds; Phosphorylation; Piperazines; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-kit; Pyridines; Pyrimidines; Sorafenib; Thiazoles | 2007 |
Effect of the multitargeted tyrosine kinase inhibitors imatinib, dasatinib, sunitinib, and sorafenib on mitochondrial function in isolated rat heart mitochondria and H9c2 cells.
Topics: Adenosine Triphosphate; Animals; Benzamides; Benzenesulfonates; Cell Survival; Dasatinib; Dose-Response Relationship, Drug; Electron Transport; Galactose; Glucose; Imatinib Mesylate; Indoles; Male; Mitochondria, Heart; Mitochondrial Membrane Transport Proteins; Mitochondrial Permeability Transition Pore; Myocytes, Cardiac; Niacinamide; Oxidative Phosphorylation; Phenylurea Compounds; Piperazines; Protein Kinase Inhibitors; Protein-Tyrosine Kinases; Pyridines; Pyrimidines; Pyrroles; Rats; Rats, Sprague-Dawley; Sorafenib; Sunitinib; Thiazoles | 2008 |
Preclinical evaluation of dasatinib, a potent Src kinase inhibitor, in melanoma cell lines.
Topics: Antineoplastic Agents; Apoptosis; Benzenesulfonates; Blotting, Western; Cell Cycle; Cell Line, Tumor; Cell Movement; Cell Proliferation; Dacarbazine; Dasatinib; Drug Screening Assays, Antitumor; Drug Synergism; Focal Adhesion Protein-Tyrosine Kinases; Humans; Melanoma; Neoplasm Invasiveness; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Proto-Oncogene Proteins pp60(c-src); Pyridines; Pyrimidines; Receptor, EphA2; Sorafenib; Temozolomide; Thiazoles | 2008 |
Therapeutic Drug Monitoring of the new targeted anticancer agents imatinib, nilotinib, dasatinib, sunitinib, sorafenib and lapatinib by LC tandem mass spectrometry.
Topics: Antineoplastic Agents; Benzamides; Benzenesulfonates; Chromatography, Liquid; Dasatinib; Drug Monitoring; Humans; Imatinib Mesylate; Indoles; Lapatinib; Neoplasms; Niacinamide; Phenylurea Compounds; Piperazines; Pyridines; Pyrimidines; Pyrroles; Quinazolines; Sorafenib; Sunitinib; Tandem Mass Spectrometry; Thiazoles | 2009 |
Effect of the tyrosine kinase inhibitors (sunitinib, sorafenib, dasatinib, and imatinib) on blood glucose levels in diabetic and nondiabetic patients in general clinical practice.
Topics: Aged; Antineoplastic Agents; Benzamides; Benzenesulfonates; Blood Glucose; Dasatinib; Diabetes Mellitus; Female; Humans; Hypoglycemia; Hypoglycemic Agents; Imatinib Mesylate; Indoles; Linear Models; Male; Middle Aged; Neoplasms; Niacinamide; Pennsylvania; Phenylurea Compounds; Piperazines; Protein Kinase Inhibitors; Protein-Tyrosine Kinases; Pyridines; Pyrimidines; Pyrroles; Retrospective Studies; Risk Assessment; Risk Factors; Sorafenib; Sunitinib; Thiazoles; Time Factors; Treatment Outcome | 2011 |
[KIT and KIT: from biology to clinical use].
Topics: Antineoplastic Agents; Benzamides; Benzenesulfonates; Gastrointestinal Stromal Tumors; Humans; Imatinib Mesylate; Indoles; Niacinamide; Phenylurea Compounds; Piperazines; Piperidines; Prognosis; Protein Kinase Inhibitors; Proto-Oncogene Mas; Proto-Oncogene Proteins c-kit; Pyridines; Pyrimidines; Pyrroles; Sorafenib; Sunitinib; Thiazoles | 2012 |
Characterization of kinase inhibitors using different phosphorylation states of colony stimulating factor-1 receptor tyrosine kinase.
Topics: Animals; Benzamides; Benzenesulfonates; Binding, Competitive; Cell Line; Dasatinib; Dose-Response Relationship, Drug; Humans; Imatinib Mesylate; Indazoles; Indoles; Kinetics; Niacinamide; Phenylurea Compounds; Phosphorylation; Piperazines; Protein Kinase Inhibitors; Pyridines; Pyrimidines; Pyrroles; Receptor, Macrophage Colony-Stimulating Factor; Sorafenib; Spodoptera; Staurosporine; Sulfonamides; Sunitinib; Surface Plasmon Resonance; Thiazoles; Transfection | 2012 |
New imidazo[2,1-b]thiazole derivatives: synthesis, in vitro anticancer evaluation, and in silico studies.
Topics: Antineoplastic Agents; Benzenesulfonates; Cell Line, Tumor; Cell Proliferation; Drug Screening Assays, Antitumor; Humans; Imidazoles; Melanoma; Neoplasms; Niacinamide; Phenylurea Compounds; Pyridines; Sorafenib; Structure-Activity Relationship; Thiazoles | 2011 |
Treatment effects of the multikinase inhibitor sorafenib on hepatoblastoma cell lines and xenografts in NMRI-Foxn1 nu mice.
Topics: alpha-Fetoproteins; Animals; Antineoplastic Agents; Apoptosis; Benzenesulfonates; Blotting, Western; Caspase 3; Cell Line, Tumor; Cell Survival; Extracellular Signal-Regulated MAP Kinases; Fluorescent Antibody Technique, Indirect; Forkhead Transcription Factors; Hepatoblastoma; In Situ Nick-End Labeling; Mice; Neovascularization, Pathologic; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Pyridines; Sorafenib; Tetrazolium Salts; Thiazoles; Transplantation, Heterologous; Transplants | 2012 |
Dasatinib synergizes with both cytotoxic and signal transduction inhibitors in heterogeneous breast cancer cell lines--lessons for design of combination targeted therapy.
Topics: Antineoplastic Combined Chemotherapy Protocols; Benzenesulfonates; Breast Neoplasms; Butadienes; Cell Line, Tumor; Chromones; Dasatinib; Dose-Response Relationship, Drug; Drug Synergism; Enzyme Inhibitors; Epothilones; Female; Humans; Morpholines; Niacinamide; Nitriles; Paclitaxel; Phenylurea Compounds; Pyridines; Pyrimidines; Signal Transduction; Sirolimus; Sorafenib; Tamoxifen; Thiazoles | 2012 |
MCL1 down-regulation plays a critical role in mediating the higher anti-leukaemic activity of the multi-kinase inhibitor Sorafenib with respect to Dasatinib.
Topics: Antineoplastic Agents; Benzenesulfonates; Cell Line, Tumor; Dasatinib; Down-Regulation; Humans; Leukemia, Myeloid, Acute; Myeloid Cell Leukemia Sequence 1 Protein; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-bcl-2; Pyridines; Pyrimidines; Sorafenib; Thiazoles | 2012 |
Comparison of the effects of two kinase inhibitors, sorafenib and dasatinib, on chronic lymphocytic leukemia cells.
Topics: Benzenesulfonates; Cell Survival; Dasatinib; Dose-Response Relationship, Drug; Humans; Lethal Dose 50; Leukemia, Lymphocytic, Chronic, B-Cell; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Pyridines; Pyrimidines; Sorafenib; Thiazoles; Treatment Outcome; Tumor Cells, Cultured | 2012 |
In-vitro growth inhibition of chemotherapy and molecular targeted agents in hepatocellular carcinoma.
Topics: Alanine; alpha-Fetoproteins; Antibodies, Monoclonal, Humanized; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Benzimidazoles; Carcinoma, Hepatocellular; Cetuximab; Dasatinib; Doxorubicin; Drug Screening Assays, Antitumor; Epothilones; Gefitinib; Humans; Indoles; Inhibitory Concentration 50; Liver Neoplasms; Niacinamide; Phenylurea Compounds; Piperidines; Pyridones; Pyrimidines; Pyrroles; Quinazolines; Sorafenib; Sunitinib; Thiazoles; Triazines | 2013 |
Inhibition of related JAK/STAT pathways with molecular targeted drugs shows strong synergy with ruxolitinib in chronic myeloproliferative neoplasm.
Topics: Adult; Aged; Aged, 80 and over; Benzhydryl Compounds; Cell Proliferation; Cells, Cultured; Chronic Disease; Dasatinib; Dose-Response Relationship, Drug; Drug Evaluation, Preclinical; Drug Synergism; Female; Humans; Janus Kinase 2; Janus Kinases; Male; Middle Aged; Myeloproliferative Disorders; Niacinamide; Nitriles; Phenylurea Compounds; Phosphorylcholine; Polycythemia Vera; Protein Kinase Inhibitors; Pyrazoles; Pyrimidines; Pyrrolidinones; Signal Transduction; Sorafenib; STAT5 Transcription Factor; Thiazoles; Thrombocythemia, Essential; Tumor Cells, Cultured | 2013 |
Simultaneous analysis of anticancer agents bortezomib, imatinib, nilotinib, dasatinib, erlotinib, lapatinib, sorafenib, sunitinib and vandetanib in human plasma using LC/MS/MS.
Topics: Antineoplastic Agents; Benzamides; Boronic Acids; Bortezomib; Chromatography, Liquid; Dasatinib; Erlotinib Hydrochloride; Humans; Imatinib Mesylate; Indoles; Lapatinib; Niacinamide; Phenylurea Compounds; Piperazines; Piperidines; Pyrazines; Pyrimidines; Pyrroles; Quinazolines; Reproducibility of Results; Sorafenib; Sunitinib; Tandem Mass Spectrometry; Thiazoles | 2013 |
Impact of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) gene dosage on plasma pharmacokinetics and brain accumulation of dasatinib, sorafenib, and sunitinib.
Topics: Animals; Area Under Curve; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily G, Member 2; ATP-Binding Cassette Transporters; Brain; Dasatinib; DNA, Complementary; Female; Gene Dosage; Half-Life; Indoles; Male; Maternal-Fetal Exchange; Mice; Mice, Knockout; Niacinamide; Phenylurea Compounds; Pregnancy; Protein Kinase Inhibitors; Protein-Tyrosine Kinases; Pyrimidines; Pyrroles; Real-Time Polymerase Chain Reaction; RNA; Sex Characteristics; Sorafenib; Sunitinib; Thiazoles | 2013 |
Cytotoxic properties of sunitinib and sorafenib on human corneal epithelial cells.
Topics: Antineoplastic Agents; ATP Binding Cassette Transporter, Subfamily G, Member 2; ATP-Binding Cassette Transporters; Biomarkers; Cell Line; Cell Survival; Enzyme-Linked Immunosorbent Assay; Epithelium, Corneal; Humans; Immunohistochemistry; Indoles; Membrane Proteins; Microscopy, Fluorescence; Microscopy, Phase-Contrast; Neoplasm Proteins; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Pyrroles; Receptor, Platelet-Derived Growth Factor beta; Sorafenib; Sunitinib; Tetrazolium Salts; Thiazoles | 2014 |
Important role of CYP2J2 in protein kinase inhibitor degradation: a possible role in intratumor drug disposition and resistance.
Topics: Benzamides; Carcinoma, Hepatocellular; Cell Line, Tumor; Cytochrome P-450 CYP1A1; Cytochrome P-450 CYP1B1; Cytochrome P-450 CYP2J2; Cytochrome P-450 CYP3A; Cytochrome P-450 Enzyme System; Dasatinib; Hep G2 Cells; Humans; Imatinib Mesylate; Indoles; Liver Neoplasms; Niacinamide; Phenylurea Compounds; Piperazines; Protein Kinase Inhibitors; Pyrimidines; Pyrroles; Reverse Transcriptase Polymerase Chain Reaction; Sorafenib; Sunitinib; Thiazoles | 2014 |
Inhibition of c-Kit by tyrosine kinase inhibitors.
Topics: Aminopyridines; Antineoplastic Agents; Benzothiazoles; Biomarkers; Bone Marrow; Cell Line, Tumor; Clinical Trials as Topic; Dasatinib; fms-Like Tyrosine Kinase 3; Gene Expression; Hair; Hematopoietic Stem Cells; Humans; Indazoles; Leukemia, Myeloid, Acute; Niacinamide; Phenylurea Compounds; Pigmentation; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-kit; Pyrimidines; Pyrroles; Sorafenib; Sulfonamides; Thiazoles | 2015 |
Comparative Metabolomic Profiling of Hepatocellular Carcinoma Cells Treated with Sorafenib Monotherapy vs. Sorafenib-Everolimus Combination Therapy.
Topics: Annexin A5; Antineoplastic Combined Chemotherapy Protocols; Carcinoma, Hepatocellular; Drug Synergism; Everolimus; Fluorescein-5-isothiocyanate; Hep G2 Cells; Humans; Liver Neoplasms; Magnetic Resonance Spectroscopy; Metabolic Networks and Pathways; Metabolomics; Multivariate Analysis; Niacinamide; Phenylurea Compounds; Sorafenib; Tetrazolium Salts; Thiazoles | 2015 |
Meloxicam combined with sorafenib synergistically inhibits tumor growth of human hepatocellular carcinoma cells via ER stress-related apoptosis.
Topics: Animals; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Carcinoma, Hepatocellular; Cell Line, Tumor; Cell Proliferation; Drug Synergism; Endoplasmic Reticulum Chaperone BiP; Endoplasmic Reticulum Stress; Gene Expression Regulation, Neoplastic; Humans; Liver Neoplasms; Meloxicam; Mice; Niacinamide; Phenylurea Compounds; Sorafenib; Thiazines; Thiazoles; Xenograft Model Antitumor Assays | 2015 |
Anticancer profile of newly synthesized BRAF inhibitors possess 5-(pyrimidin-4-yl)imidazo[2,1-b]thiazole scaffold.
Topics: Antineoplastic Agents; Binding Sites; Catalytic Domain; Cell Line, Tumor; Cell Proliferation; Drug Design; Drug Screening Assays, Antitumor; Humans; Imidazoles; Molecular Docking Simulation; Protein Kinase Inhibitors; Proto-Oncogene Proteins B-raf; Sorafenib; Structure-Activity Relationship; Thermodynamics; Thiazoles | 2019 |
Imidazothiazole-based potent inhibitors of V600E-B-RAF kinase with promising anti-melanoma activity: biological and computational studies.
Topics: Antineoplastic Agents; Carbamates; Cell Line, Tumor; Cell Proliferation; Drug Screening Assays, Antitumor; Humans; Imidazoles; Melanoma; Molecular Dynamics Simulation; Oximes; Protein Kinase Inhibitors; Proto-Oncogene Proteins B-raf; Quantitative Structure-Activity Relationship; Sorafenib; Sulfonamides; Thiazoles; Vemurafenib | 2020 |
Sorafenib and nitazoxanide disrupt mitochondrial function and inhibit regrowth capacity in three-dimensional models of hepatocellular and colorectal carcinoma.
Topics: Antineoplastic Agents; Carcinoma, Hepatocellular; Colorectal Neoplasms; Humans; Liver Neoplasms; Mitochondria; Nitro Compounds; Sorafenib; Thiazoles | 2022 |